
'AD-AliSS 699 VLSI (VERV LARGE SCALE INTEGRATION) DESIGN TOOLS i/5
REFERENCE MANUAL RELEASE 3e(U) WASH4INGTON UNIV SEATTLE
DEPT OF COMPUTER SCIENCE AUG 85 TR-85-87-03

UNCLASSIFIED MDA983-85-K-0072 F/G 9/5 N



-- w "--

,

4..

IA1.8

IIL2.I.I2111"--- 111"-- 336 -"

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS-I963-A

.
".4- ," " " J . " " J -- " , - - -"2 , , " v .,, ... ', " .' ". p v ' , ' w , ; "', " " . ,,.,"



J

00 R
VLSI DESIGN TOOLSj

REFERENCE MANUAL A

RELEASE 3.0L TI
* June\Lj 1985 ELECTEK

K AUG 2 9 685j

UW/NW VLSI CONSORTIUM
University of Washington, Seattle, Washington 98195

~ DS2I~~j'!O'~SI TjM-NTA

A~P~oved tor pubLic r.~iuase;
- ~Distiibutjon Unlimited I . ;* *.**< *.



unclassified
'ECUnITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
REPORT__ DOCUMENTATIONPAGE_ BEFORE COMPLETING FORM

.. .. REPORT NUMBER 12.AGOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
TR-85-07-03 11!.J/ -: :

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

VLS DEIG TOLSTechnical , Interim

REFERENCE MANUAL - RELEASE 3.0 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) 1. CONTRACT OR GRANT NUMBER(#)

UW/NW VLSI Consortium MDA 903-85-K-0072

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

UW/NW VLSI Consortium AREA II WORK UNIT NUMBERS

Department of Computer Science, FR-35
University of Washington N/A
Seattle, Washington 98195

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE

DARPA/IPTO August 1985
1400 Wilson Boulevard 13. NUMBER OF PAGES

Arlington, Virginia 22209 423
14. MONITORING AGENCY NAME I ADDRESS(i/ dil/tenl hofr Controlling Office) IS. SECURITY CLASS. (of this rtport)

ONR
University of Washing ton unclassified
315 University District Building I ,. OECLASSIFICATION/IOWNGRADING
1107 N.E. 45th St., JD-16 SCNEOULE
Seattle, Washington 98195

IS. DISTRIBUTION STATEMENT (of thlls Report)

7 Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (of the abetract antered in Block 0 l iff d rletam no Rep*#t)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Conltiue on toers side If noceeer and identitfy by block nhrnblbe)

very large scale integration, VLSI design toos, CAD tools, CMOS, nMOS,
VLSI layout, VLSI circuit simulation, design rule checking

20. ABSTRACT (Continue n treeret aide If neceesry and Identlfy by block nmbOe)

This report describes the use of the University of Washington/Northwest VLSI
Consortium's Package of VLSI design tools. The tools described are:

(see reverse)

DD 1 JAN 73 1473 9DITION OF INOV 65 IS OBSOLTIE ucasfe
$IN 0102-LF-014-6601 ucasfe

SECURITY CLANIFICATION OF THIS PAGE (When Dots Enlered)

%ht



unclassified

SECUnITY CLASSIFICATION OF THIS PAjE (WI.an fhwto Eitered)

APPENDIX A. TOOL DESCRIPTIONS

1. Functional Design Tools

.I "PEG*: Translates a finite state machine description into logic equations.

1.2 EQNTOTT: Converts logic equations into a truth table format.

1.3 "PRESTO: Minimizes truth table attributes.

2. Layout Tools

2.1 "CFL": Library of coordinate free layout procedures.

2.2 'CAESAR*: Graphical layout editor.

2.3 "TPLA': Technology independent pin generator.

2.4 'PADS': Padframe generator.

3. D splay Tools

3.1 "CIFPLOT': Plots CIF designs using stipple patterns.

3.2 'VIC": - Displays designs on TEK 4010 compatible devices and drives penplotters.

4. Rule Checkers

4.1 "CDRC': Checks CIF designs against CMOS rules.

4.2 'LYRA': Performs hierarchical design rule check.

5. Circuit Estractor ,
J

5.1 "MEXTRA': Extricts circuit description from CIF design.

6. Simulation Tools

6.1 "SPICE2G6": Device level circuit simulator.

6.2 "RNL': Event driven timing simulator.
6.3 "MTP': Displays RNL and SPICE output on a line printer.

6.4 "SIMSCOPE: Displays RNL and SPICE output on a CRT.

7. Utlldes/Mlscellaneos

7.1 'NETLISr: Generates circuit description procedurally.

7.2 "PRESIM': Converts a circuit de!-iption to RNL input.
7.3 "PSPICEO: Creates a complete spice input deck from a circuit description and uscr input.

7.4 "CELLIB: Layouts of a set of standard cells and pads in CMOS.

unclassified
S* ---. " SECURITY CLASSIP*CATION O,7WIS PAGErMb" DOMa 80t1eeo,)

4L ~*



- ~V S De ig Tools- --.- ,.-- .-

VLSI8 Designio Tool

NTTS GRA&I

ByTA

Distribut ion/

Availability Codes
Avail an/o

Dist special

44

3 UW/NW VLSI Consortium
Department of Computer Science

Room 315 Sieg Hall
University of Washington FR-35

Seattle, Washington 98195



TABLE OF CONTENTS

1. Introduction

1.1 Who We Are: The UW/NW VLSI Consortium
1.2 Installation Instructions

2. Overview of VLSI Design Tools
2.1 Enhancements since Release 2.1
22 Layout Tools : Functional Chart
2.3 Simulation Tools: Functional Chart
2.4 Tool Descriptions

3. Manual Pages

4. Coordinate Free LAP Reference Manual

5. Editing VLSI Circuits with Caesar

6. Standard Cell Library Guide

7. NETLIST/PRESIM/RNL Users Guides and Tutorials
6.1 NETLIST User's Guide
6.2 PRESIM User's Guide
6.3 RNL User's Guide
6.4 NETLIST and RNL Tutorial for Beginners
6.5 NETLIST/PRESIM/RNL - A Tutorial

8. SPICE User's Guide

9. Designing Finite State Machines with PEG

10. Specifying Design Rules for Lyra

L %. -.
4- C:,:-.:-:"':.:- .i : ' " - ° - " - " " " "- " ' '. -"' . . ' ' "- " " - " --: -" ." ' ' '



INTRODUCTION

Who We Are: The Untverulty of Waudhngto/Northwead VLSI Consortim

UW/NW VLSI Consortium members include the University of Washington, represented by
the Computer Science Department, and five Pacific Northwest firms: Boeing Aerospace,
Honeywell Marine Systems, John Fluke Manufacturing, Microtel Pacific Research of Canada,
and Tektronix, Inc. The purpose of the Consortium is to advance the state of the art in VLSI
technology and to transfer this technology between industry and the university.

Each corporate member of the Consortium has a full-time liaison on campus who cooperates
with faculty and students on circuit design as well as filling the role of visiting faculty, work-
ing with graduate students and contributing valuable 'real world" experience to the Depart-
menat of Computer Science. This program serves as a demonstration of cooperative research
and technology exchange among universities and industries.

The Consortium maintains a VLSI design system and plans to evolve its capability over time,
as well as to provide training in its use. The Consortium validates the system by exercising it
with complex design problems. Miming pieces are identified and used for guiding future
research and development. The resulting system is made available to other universities and
industry.

The research activities of the Consortium are focused in the area of VLSI design generators -

programs that create circuit design layouts as well as other circuit description forms. (Genera-
tors are being distributed with this release; others may be exported in the future.) The gen-
erator research will lead to a general methodology for building generators and incorporating

- them into a custom VLSI design environment.

UW2NW VLSI Release 3.0 .2- 0610185- - -* '*



Introduction UW/NW VLSI Consortium

'.. Install , Precedure
The distribution tape contains VLSI design tools that run on a VAX with Berkeley 42 UNIX.
Many of them will not run on other machines or other versions of UNIX. In addition, VLSI
display tools require plotting or graphics devices:

Pen plotters (HP722, HP710)
Dot matrix printers (Versatec, Varian, Printronix)

Interactive graphics devices with bitpads (AEDSl2, Metheus Omega 440)

The tape contains two 1600-bpi tar format files:

1) UW/NW VLSI Design Tools, Release 2.1.

2) VLSI Tools for 42 Berkeley UNIX as distributed by Berkeley (1984 versions).

The first file includes complete, self-contained tools as well as modifications to several Berke-
ley tools contained in the second file. Organization of the first file is as follows:

bin executables and shell scripts
doc user manuals
include source header files for some tools
lib archived libraries and other stuff
man UNIX programmer's manual entries for each tool
src source code, make files, and installation scripts

To install the tools:
1. Copy the first file on the tape to a suitable directory (on our system it's /src/vlsi/vlsi-

tools) using the tar command. If you do not already have the 4.2 Berkeley Tools you
will need to copy the second file of the tape into some other directory.

2. Set environment variable UWVLSITOOLS to the full path name of this directory (e.g.
setenv UWVLSI_.TOOLS /src/vlsilvlsi-tools). (Put this in your login file.)

3. Set (Jogin file again) the following environment variables:

PATH to some path that includes $UWVLSITOOLSIbin
PLAPPATH to some path that includes SUWVLSITOOLS/lib/technology
RNLPATH to some path that includes SUWVLSITOOLS/ib/rnl

Directory SUWVLSITOOLS/bin should precede /usr/ucb and /usr/bin if you want to
take advantage of the new man command that accesses $UWVLSITOOLS/man,
cad/man (Berkeley VLSI tools), and /usr/man.

4. Cd to SUW VLSI-TOOLS/src and run 'MAKE man' to initialize the manual pages.

5. If you are running Berkeley 4.1 you will have to run MAKEALL (in
SUW VLSITOOLS/src) to recompile everything. Most of the tools have been run suc-
cessfully on 4.1, but you should add a .Dbsd4l flag in src/lib/libutil/makefile when com-
piling on 4.1.

There are several improvements (including man pages) and bug fixes for the 42 Berkeley tools
available in SUWVLSI TOOLS/src/ucb-cad.42. These may be installed using the INSTALL-
UCB script in SUWVLSITOOLS/src. You may wish to review the README file in
S1UW VLSITOOLS/src/ucb-cad.42 and edit INSTALL-UCB appropriately if you want only
some of the changes. Since. only the changed source files are included in
5UW VLSI TOOLS/src/ucb-cad.4.2, you must follow the procedures documented with the
Berkeley VLSI tools to complete the installation after using INSTALL-UCB.

The following miscellaneous sources are included:

9Sources for lpr that complement the changes to cifplot and allow cifplot to be used with a
-' " Printronix.

"/NW VLSI Release 3.0 .3- 06/01/85



Introduction JW/NW VLSI Consortium

Sources for a parallel interface device driver for a Metheus omega 440 color graphics display. "'""
A DEC DR-IIW is needed in addition to the Metheus.

UW/NW VLSI Release 3.0 .4- 06o1,a5



Introduction UW/NW VLSI Consortium

* -. 2.0 OVERVIEW OF VLSI DESIGN TOOLS

ENHANCEMENTS SINCE RELEASE 2.1

A major improvement in the design system has been the addition Coordinate Free LAP
(CFL), a library of "C' procedures that facilitates the layout of VLSI designs. CFL contains a
variety of operators for juxtaposing, transforming and replicating hierarchies of cells.
Although CFL has sufficient functionality to allow specification of arbitrary rectlinear mask
geometries, it is mainly intended to be used in the chip assembly mode. Hence the typical
application would be to use the graphical editor Caesar to generate lower level cells (or tiles)
and then use CFL to to assemble these cells into higher level modules. Routing facilities are
provided which generate a variety of planar and nonplanar wire patterns used to connect
functional blocks. CFL replaces the aging Pascal-based layout facility PLAP.

A number of layout generators have been written with the CFL facility. Each produces a lay-
out consistent with the MOSIS 3 micron bulk CMOS spceification. The multiplier generator
mal produces a NxM two's complement multiplier with ripple carry addition. The generator
decNor produces a dynamic nor form decoder with an arbitrary number of address bits and
banks. A padframe generator pads produces a MOSIS - acceptable padframe with input, out-
put and tristate pads instantiated according to user specifications.

Several new programs have been added to allow easier construction of RNL control files.
These include gen..comroi and gnej_tim. A new display program, simscope, will display signal
behavior derived from rrd or spice on several different graphics terminals.

The design system described in the rest of this manual contains a number of tools from the
1984 Berkeley VLSI Tools Distribution. Since March 1985, Berkeley has distributed a 1985
toolset that includes magic, mpack, cifplot, crystal, esim, and various PLA tools. For informa-
tion on these tools contact

Prof. John K. Ousterhout

Computer Science Division

Department of Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720

(415 642 0865)

V
UW/NW VLSI Release 3.0 5 - 06101/85 ,



* .introduction UW/NW VLSI Consortium

LAYOUTf TOOLS: FUNCTIONAL CHART

FSM Descriptions

Peg

layout Logic Equations
generators

tpla Truth Table

cfl 4rst
CA

Vic cea

Metheus Omega 440

Tek 4010 HP 7580
Telv 4105 HP 7221
GP19

CIF drc

cdrc

cifplot

Versatec
Print ronix

UWINW VLSI Release 3.0 * 6- 06/01185



Introduction

U'WfVNW VLSI Consortium
SLMLATON TOO" : FUNCTONAL CUA&T

CIF Truth Table

pla2ziet

M@Xtra

S114
(UCB & MIT)

presim
(sim2spice. Spcpp)

Spice Input Utitgntz

Irl controlspice

Pul

mtp 
sillecope

* Printroni,
Tek 4010
Tek 4105

UjW/NW 'VLSI Release 3.0D.0/18

- . .0 
6.0. 

-.



-.- .- -r-r.. .-..- - --. .

Introduction UW/NW VLSI Consortium

TOOL DESCRJPTIONS
The following is a brief overview of the vlsi-tools we are distributing. An asterisk () appears
after the name of tools that are contained in the 1984 Berkeley Distribution.

FuacUonal Dedig Tools

peg " Translates a language description of a finite state machine into logic equations
compatible with eqntost. ( Gordon Hamachi, UCB)

eqraott Converts logic equations into a truth table format to be used as input to mkpla or
tpla. ( Bob Cmelik, UCB)

presto Tries to minimize the number of product terms in a truth table. ( UCB)

K Layout Construction Tools

caesar A display editor for manhattan designs written at Berkeley. Runs on AED512 or
Metheus Omega 440 color displays. Requires a design to be inputted in caesar
format but will optionally output in CIF. ( John Ousterhout, UCB)

C.  I A library of C procedures for assembling caesar formatted cells into modules.
Employed by pads, decNor and malt. ( William Beckett, UWINW VLSI Consor-
tium)

pads A generator for constructing a MOSIS padframe with user-specified pad types. (
Wayne Winder, UW/NW VLSI Consortium)

mull A generator for constructing an NxM multiplier in MOSIS CMOS. (Wayne
Winder, UW/NW VLSI Consortium)

decNor A generator for constructing a MOSIS CMOS "nor" form decoder with an arbi- -/

trary number of inputs and banks. ( David Morgan, UW/NW VLSI Consortium)
tpla * Technology independent pla artwork generator. Employs a Caesar-generated

template and a truth table. ( Robert Mayo, UCB)

Layout Display Tools

cifplo: * Berkeley program that plots a CIF design in stipple patterns on Versatec or Prin-
tronix dot-matrix printers. ( Dan Fitzpatrick, UCB)

vic Display program for a Tektronix 4010 compatible device with penplot options for
HP 4- and 8-pen plotters. Takes Caesar files. (Bruce Yanagida, Boeing; Larry
McMurchie, UW/NW VLSI Consortium)

Design Rule Checkers

drc Design rule checker from Carnegie-Mellon. Checks MOSIS NMOS (buried con-
tact) rules on Manhattan CIF designs. ( Dorothea Haken, CMU)

drcscript Merges the design rule violation files created by drc with the CIF design file for
display purposes. ( Dorothea Haken, CMU)

cdrc Carnegie-Mellon design rule checker with MOSIS CMOS rules. (Jagannathan
Ramaujam)

cdrcscript Merges cdrc violation. files with the CIF file.

lyra * Performs hierarchical design rule check on a Caesar-formatted design using a
corner based algorithm. NMOS and CMOS rulesets are available. ( Michael
Arnold, UCB)

Circuit Extractor

UW/NW VLSI Release 3.0 -8- 06/01/85

- - - ------ - --- . -. .



, :, ;, . -- - - m . : - q 7 ,. -I -, - : . "

Introduction UW/NW VLSI Consortium

mextra Extracts a aim file from a CIF input file for use in presim and sim2splce. (Dan
Fitzpatrick, UCB)

Sluatle Took

spice2gE The well known device level circuit simulator with minor mods to output an
additional file that allows multiple time series plots to be made. ( Lawrence
Nagel, UCB)

rat An event driven "timing simulator. It uses logic levels and a simplified circuit
model to estimate timing delays through digital circuits. ( Chris Terman, MIT)

Ip Produces signal behavior plots on a Printronix printer, the simulation output
from either spice or rat. (William Beckett, UW/NW VLSI Consortium)

sinucope Displays signal behavior plots on a Tek 4010 or Tek 4105. Input can come from
either spice or rni. ( Rudolf Nottrott)

Filters md UtUitiu

cif2ca * Converts from CIF format to caesaw format. ( Peter Kessler, UCB)

nettist Generates circuit descriptions in the form of a aim file. ( Chris Terman, MIT)

presim Converts a Ai file into the binary format required by rt. In the process presai
simplifies the circuit by identifying gates in the circuit. ( Chris Terman, MIT)

ppice Runs sim2spice and spcpp. In addition to running those programs it concatenates
various files so as to create a complete Spice input deck. ( Rob Fowler, UW/NW
VLSI Consortium)

sim2spice Reads a Aim file containing a description of a circuit and writes a .ams file and
a spice file. The .names file contains a translation from node names in the aim
file to the Spice node numbers. The spke file contains a description of the dev-
ices in the circuit in a form acceptible to Spice. ( Dan Fitzpatrick, UCB)

spcpp Facilitates the writing of Spice input by allowing the user to refer circuit nodes
using mnemonic node labels rather than Spice node numbers. ( Rob Fowler,
UW/NW VLSI Consortium)

spice A csh script for running spice2g6. ( Lawrence Nagel, UCB)

genuime A program for specifying input signal patterns to rt. ( Rickus Koeman, Fluke
Manufacturing)

genontrol Constructs rl control files. ( Riekus Koeman, Fluke Manufacturing)

pLa2net Creates a PLA description for use in netlist. Input is a truth table in the format
of presto and eqnton. (Riekus Koeman, Fluke Manufacturing)

UW/NW VLSI Release 3.0 -9- 06/01/85

.• .. * ~. I



Introduction UW/NW VLSI Consortium

A VLSI DESIGN STRATEGY
This document describes a strategy for creating VLSI designs with the tools of this

release. Although this strategy is a sequence of operations, the designer should realize that
iterating between them may yield higher performance designs. It begins by partitioning the
project into modules of manageable size, then for each module:

1) Define and partition the design with a high level description.

Block diagram, schematics or text files. ,,

2) Model the design as a network of transistors.

2a) Create the network of transistors.
2b) Create stimuli for this network and simulate.
2c) Repeat steps 2a and 2b until the design is stable.

3) Implement the design as a collection of integrated circuit layers.

3a) Create this layout.
3b) Verify that the layout complies with the design rules.
3c) Extract a transistor network model from the layout.
3d) Create stimuli (modified from 2b) and simulate.
3e) Repeat steps 3a,3b,3c,3d until the design is stable.

4) Fabricate the design.

5) Tst the design.
5a) Exercise the integrated circuit with simulation stimuli.
Sb) Document yield, performance and simulation discrepancies.

Step I is an abstract description of the design's operation. Design problems can be rectified at
this point far cheaper than at any other. A clear and concise description enhances the chance

- of finding design problems and eliminating interface problems with other designs. Investing
time in this step is consistent with the "topdown' design style common in software develop.ment.

Step 2 can identify errors which would take many hours to fix if discovered in a completed
layout. Some designers eliminate this step believing that design time will be reduced, but the
validity of this assumption is dependent on the design's complexity and the designer's experi-
ence. The novice should approach this shortcut with great caution. Commercial designers
avoid this tradeoff with schematic capture programs that translate the high level description
directly into the transistor network model.

UWrNW VLSI Release 3.0 t0- 06/01/5



Introduction UW/NW VLSI Consortium

The following outline describes the appropriate too[ for each step in the design cycle:

1) High Level Description
2) Transistor Network Model

Create Network
Transistor Modeled as Switch

By Hand: NETLLST. PRESIM
Generate PLAs: PEGEQNTOTT, PRESTO,

PLA2NET, PRESIM
Detailed Transistor Model: NETLIST, PSPICE

* Define Stimulus and Simulate
Transistor Modeled as Switch: RNL, SIMSCOPE, MTP
Detailed Transistor Model: PSPICE, SPICE, SIMSCOPE, MTP

3) Integrated Circuit Layout

Create Layout
By Hand: CAESAR, CFL
Generate PLAs: PEG. HONTOTT, PRESTO, TPLA
Generate Pad Frames: PADS
Generate Multipliers: MULT
Hardcopy: CIFFLOT, VIC, PENPLOT

Verify Design Rules: LYRA, CDRC
Extract Transistor Model

Transistor Modeled as Switch: CAESAR, MEXTRA, PRESIM
Detailed Transistor Model: CAESAR, MEXTRA, PSPICE

Define Stimulus and Simulate
Transistor Modeled as Switch: RNL, SIMSCOPE, MTP
Detailed Transistor Model: PSPICE, SPICE, SIMSCOPE, MTP

4, UW/NW VLSI Release 3.0 01 6/OII85



CAESAR (1) UNIX Programmer's Manual CAESAR (1)

NAME
caesar - VLSI circuit editor

SYNOPSIS
eamt" [ -a -g graphicsport -4 tabletport -p path - monitortype -d displaytype ] [ file ]

DESCRIPTION
Caesar is an interactive system for editing VLSI circuits at the level of mask geometries. It
uses a variety of color displays with a bit pad as well as a standard text terminal. For a com-
plete description and tutorial introduction, see the user manual 'Editing VLSI Circuits with
Caesar' (an on-line copy is in cad/doc/caesar.tblms).

Command line switches are:

-n Execute in non-interactive mode.

-s The next argument is the name of the port to use for communication with the graph-
ics display. If not specified, Caesar makes an educated guess based on the terminal
from which it is being run.

- The next argument is the name of the port to use for reading information from the
graphics tablet. If not specified, Caesar makes an educated guess (usually the graphics
port).

-p The next argument is a search path to be used when opening files.

-M The next argument is the type of color monitor being used, and is used to select the
right color map for the monitor's phosphors. "std' works well for most monitors,
'pale" is for monitors with especially pale blue phosphor.

-d The next argument is the type of display controller being used. Among the display
types currently understood are: AED512, UCB52 (the AED512 with special Berkeley
PROMs for stippling), AED767, AED640 (an AED767 configured as 483x640 pixels),
Omega440, R9400, or Vectrix.

When Caesar starts up it looks for a command file with the name ".caesa in the home direc-
tory and processes it if it exists. Then Caesar looks for a .caesar file in the current directory
and reads it as a command file if it exists. The caesar file format is described under the long
command source.

You generally have to log in a job on the color terminal under the name "sleeper" (no pass-
word required). This is necessary in order for the tablet to be useable. Sleeper can be killed

either by typing two control-backslashes in quick succession on the color display keyboard (on
the AED displays, control-backslash is gotten by typing control-shift-L), or by invoking the
shell command kilslteeper with the correct process id. On some systems you have to log your-
self in and run sleeper as a shell command. On still other systems there is no login process for
the color display port, so it isn't necessary to run sleeper at all.

The four buttons on the graphics tablet puck are used in the following way:

left (white)
Move the box so that its fixed corner (normally lower-left) coincides with the crosshair
position.

riht (green)
Move the box's variable corner (normally upper-right) to coincide with the crosshair
position. The fixed corner is not moved.

top (yellow)
Find the cell containing the crosshair whose lower-left corner is closest to the
crosshair. Make that cell the current cel. If the button is depressed again without

4th Berkeley Distribution



CAESAR (1) UNIX Programmer's Manual CAESAR (1)

moving the crosshair, the parent of the current cell is made the current cell.

bettom(blue)
Paint the area of the box with the mask layers underneath the crosshair. If there are
no mask layers visible underneath the croashair, erase the area of the box.

SHORT COMMANDS
Short commands are invoked by typing a single letter on the keyboard. Valid commands are:

a Yank the information underneath the box into the yank buffer. Only yank the mask
layers present under the crosshair (if there are no mask layers underneath the
croshair, yank all mask layers and labels).

C Unexpand current cell (display in bounding box form).

d Delete paint underneath the box in the mask layers underneath the crosshair (if there
are no mask layers underneath the crosshair, the delete labels and all mask layers).

• Move the box up I lambda.

a Toggle grid on/off.

I Redisplay the information on both text and graphics screens.

q Move the box left I lambda.

r Move the box down 1 lambda.

a Put back (stuff) all the information in the yank buffer at the current box location.
Stuff only information in mask layers that are present underneath the croushair (if
there are no mask layers underneath the crosshair, stuff all mask layers plus labels).

a Undo the last change to the layout.

w Move the box right one lambda.

x Unexpand all cells that intersect the box but don't contain it.

a Zoom in so that the area underneath the box fills the screen.

C Expand current cell so that its paint and children can be seen.

X Expand all cells that intersect the box, recursively, until there are no unexpanded cells
,' intersecting the box.

Z Zoom out so that everything on current screen fills the area underneath the box.

5 Move the picture so that the fixed corner of the box is in the center of the screen.
6 Move the picture so that the variable corner of the box is in the center of the screen.

"L Redisplay the graphics and text displays.

Repeat the last long command.

LONG COMMANDS
Long commands are invoked by typing a colon character ('.). The cursor will appear on the
bottom line of the text terminal. A line containing a command name and parameters should
be typed, terminated by return. Each line may consist of multiple commands separated by
semi-colons (to use a colon as part of a long command, precede it with a backslash). Short
commands may be invoked in long command format by preceding the short command letter
with a single quote. Unambiguous abbreviations for command names and parameters are

- accepted. The commands are:

4th Berkeley Distribution 2



-..

CAESAR (1) UNIX Programmer's Manual CAESAR (1)

8lin < scale>
Change crosshair alignment to <scale>. Crosshair position will be rounded off to
nearest multiple of <scale>.

array <ulze> <ydae>
Make the current cell into an array with < xsize> instances in the x-direction and
< ysize> instances in the y-direction. The spacing between elements is determined by
the box x- and y-dimensions.

array < hot> < ybot> < stop> < ytop>
Make the current cell into an array, numbered from <xbot> to <xtop> in the x-
direction and from <ybot> to <ytop> in the y.direction. The spacing between
array elements is determined by the box x- and y-dimensions.

box < keyword> <amount>
Change the box by <amount> lambda units, according to <keyword>. If <key-
word> is one of 'left', 'right', 'up', or 'down', the whole box is moved the indicated
amount in the indicated direction. If < keyword> is one of "sbot', "ybot', 'stop, or
"'ytop', then one of the coordinates of the box is adjusted by the given amount.
< amount> may be either positive or negative.

button <number> < x> < y>

Simulate the pressing of button <number> at the screen location given by < x> and
<y> (in pixels). If <x> and <y> are omitted, the current crosshair position is
used.

clf -sblpz < name> < scale>
Write out a CIF description of the layout into file <name> (use edit cell name by
default; a '.cif' extension is supplied by default). < scale> indicates how many cen-
timicrons to use per Caesar unit (200 by default). The -s switch causes no silicon
(paint) to be output to the CF file. The -b switch causes bounding boxes to be drawn
for unexpanded cells. The -1 causes labels to be output. The -p switch causes a CIF
point to be generated for each label. The -z switch causes Caesar not to automatically
expand all cells (they are expanded by default).

eload < fle>
Load the colormap from < file>. The monitor type is used as default extension.

clockwise <degrees> (y]

Rotate the current cell by the largest multiple of 90 degrees less than or equal to
<degrees>. <degrees> defaults to 90. If the command is followed by a 'y then the
yank buffer is rotated instead of the current cell.

colormap < layers>
Print out the red, green, and blue intensities associated with < layers>.

colormap < layers> < red> < green> < blue>
Set the intensities associated with <layers> to the given values.

copyceU
Make a copy of the current cell, and position it so that its lower-left corner coincidcs
with the lower-left corner of the box.

cuve < e>
Save the current colormap in < file> (the monitor type is used as default extension).

deletecelU
Delete the current cell.

editel < file>
Edit the cell hierarchy rooted at <file>. A '.ca extension is supplied by default. If

,, *Berkeley Distribution 3

- ..



CAESAR (1) UNIX Programmer's Manual CAESAR (1)

information in the current hierarchy has changed, you are given a chance to write it
out.

erasepalat < lay"%>
For the area enclosed by the box, erase all paint in < layers>. If < layers> is omitted
it defaults to 'r.

fil < directio> < layers>
<direction> is one of wleft, "right', up', or "down'. The paint under one edge of
the box (respectively, the right, left, bottom, or top edge) is sampled; everywhere that
the edge touches paint, the paint is extended in the given direction to the opposite
side of the box. < layers> selects which layers to fill; if omitted then a default of 0
is used.

flshceU
Remove the definition of the current definition from main memory and reload it from
the disk version. Any changes to the cell since it was last written are lost.

getceU <file>
This command makes an instance of the cell in < file> (a ".ca extension is supplied
by default) and positions that instance at the current box location. The box size is
changed to equal the bounding box of the cell.

gridspacig
The grid is modified so that its spacings in x and y equal the dimensions of the box.
The grid is set so that the box falls on grid points.

gripe The mail program is run so that comments can be sent to the Caesar maintainer.

height < size>
The box's height is set to < size>. If <size> is preceded by a plus sip then the fixed
corner is moved to set the correct height; otherwise the variable corner is moved.
<size> defaults to 2.

deatifycel < name>
The current cell is tagged with the instance name given by <name>. This feature is
not currently supported in any useful fashion. < name> may not contain any white
space.

label <nam> < positiom>
A rectangular label is placed at the box location and tagged with < name>. < name>
may not contain any white space. <position> is one of "center', 'left", "right', 'topw,
or 'bottom"; it specifies where the text is to be displayed relative to the rectangle. If
omitted, < position> defaults to "top'.

lyra < ruleset>
The program cad/bin/lyra is run, and is passed via pipe all the mask features within
3X of the box. The program returns labels identifying design rule violations, and these
are added to the edit cell. If < ruleset> is specified, it is passed to Lyra with the -r
switch to indicate a specific ruleset. Otherwise, the current technology is used as the
ruleset.

m ro < charater> < eommad>
The given long command is associated with the given character, such that whenever
the character is typed as a short command then the given command is executed. This
overrides any existing definition for the character. To clear a macro definition, type

m znacro < character> ", and to clear all macro definitions, type "tnacro

mark< markl> < ,,mk2>
The box is saved in the mark given by < markl>. < markl> must be a lower-case

4th Berkeley Distribution 4

.--

.-.. . . . . . . . .



- -- .. ~- - -. Y - W-9~~WV T -V1.- 1. C

CAESAR (1) UNIX Programmer's Manual CAESAR (I)

letter. If < mark2> is specified, the box is changed to coincide with < mark?2>.
msolecell < key wd>

The current cell is moved in one of two ways, selected by < keyword>. If < key-
word> is 'byposition, then the cell is moved so that its lower-left corner coincides
with the lower-left corner of the box. This also happens if no keyword is specified. If
<keyword> is "bysize, then the cell is displaced by the size of the box (this means
that what used to be at the fixed corner of the box will now be at the variable corner).

paint < layers>
The area underneath the box is painted in <layers>.

path <path>
The string given by <path> becomes the search path used during file lookups.
< path> consists of directory names separated by colons or spaces. Each name should
end in '.

peek < layers>
Display all paint underneath the box belonging to < layers>, even for unexpanded
cells and their descendants.

popbx < mark>
If < mark> is specified, then the box is replaced with the given mark. Otherwise the
box stack is popped and the top stack element overwrites the box.

poshbox < mark>
The box is pushed onto the box stack. If < mark> is specified then it is used to
overwrite the box, otherwise the box remains unchanged.

put < layers>
The yank buffer information in <layers> is copied back to the box location. If
< layers> is omitted, it defaults to *sr.

quit If any cells have changed since they were last saved on disk, the user is given a chance
to write them out or abort the command. Otherwise the program returns to the shell.

reset The graphics display is reinitialized and the colormap is reloaded.

return The current subedit is left, and the containing edit is resumed.

savecell <name>
If <name> is specified then the current cell is given that name and written to disk
under the name (a ".ca" extension is supplied by default). If <file> isn't specified
then the cell is written out to the disk file from which it was read.

scroll < direction> < amount> < units>
The current view is moved in the indicated direction by the indicated amount.
< direction> must be one of 'left', 'right', up', or "down', <amount> is a floating-
point number, and <units> is one of 'screens' or 'lambda". <units> defaults to
"screens!, and < amount> defaults to 0.5.

march < re"ep>
Search labels and bounding boxes underneath the box for text matching < regexp>.
See the manual entry for ed for a description of < regexp>. Push an entry onto the
box stack for each match. Even unexpanded cells are searched.

sideways [y]
Flip the current cell sideways (i.e. about a vertical axis). If the command is followed
by a Y" then the yank buffer is Ripped instead of the current cell.

source < fflenamse>
The given file is read, and each line is processed as one long command (no colons are

4th Berkeley Distribution S

.Z7._
-. *5. *.5;5



CAESAR (1) UNIX Programmer's Manual CAESAR (1)

necessary). Any line whose last character is backslash is joined to the following line. "'"

subedit Make the current cell the edit cell, and edit it in context.

technology < Me>
Load technology information from < file>. A '.tech" extension is supplied by default.

upsidedown [y)
Flip the current cell upside down. If the command is followed by a "y' then the yank
buffer is flipped instead of the current cell.

usqe < file>
Write out in <file> the names of all the files containing cell definitions used any-
where in the design hierarchy.

view < mark>
If <mark> is specified, set view to it, otherwise, change the view to encompass the
entire edit cell.

visiblelayers < layers>
Set the visible layers to include just <layers>. Preface <layers> with a plus or
minus sign to add to or remove from the currently visible ones.

width < size>
Set the box width to < size> (default is 2). Move variable corner unless width is pre-
ceded by "+", else move fixed corner.

writeal-
Run through interactive script to write out all cells that have been modified.

yank < layers>
Save in the yank buffer all information underneath the box in <layers>. < layers>
defaults to '*I'.

yceil < name>
If < name> is specified, do the equivalent of ":getcell < name>". Then expand
current cell, yank it, delete the cell, and put back everything that was yanked. This
flattens the hierarchy by one level.

ysave < ame
Save the yank buffer contents in a cell named <name>. A ".ca extension is provided
by default.

LAYERS

nMOS mask layers are:

p or r Polysilicon (red) layer.

d or Z Diffusion (green) layer.

a Metal (blue) layer.

I or y Implant (yellow) layer.

b Buried contact (brown) layer.

e Contact cut layer.

• Overglass hole (gray) layer.

* Error layer: used by design rule checkers and other programs.

CMOS P-well mask layers are (using technology cmos-pw):

p or r Polysilicon (red) layer.

4th Berkeley Distribution 6

,........ * . . .



J **r ..

CAESAR (1) UNIX Programmer's Manual CAESAR (1)

d or g Diffusion (green) layer.

I Metal (blue) layer.

c Contact cut layer.

P or y P+ implant (pale yellow) layer.

w P-well (brown stipple) layer.

o Overglass hole (gray) layer.

* Error layer: used by design rule checkers and other programs.

Predefined system layers are:

0 All mask layers.

I Label layer.

S Subcell layer.

C Cursor layer.

G Grid layer.

5 Background layer.

SYSTEM MARKS
C The bounding box of the current cell.

g The bounding box of the edit cell.

P The previous view.
a The bounding box of the root cell.

V The current view.

FILES
cad/new/caesar, "cad/doc/caesar.tblms

SEE ALSO
cif2ca(1)

AUTHOR
John Ousterhout

BUGS

4th Berkeley Distribution 7



CDRC (1.VLSI) VLSI CAD Tools Manual CDRC( I.VLSI)

NAME
cdrc, cdrcscript, drc, drcscript - CMOS-BULK 3 micron and NMOS VLSI design rule checkers

SYNOPSIS
dre [-kul basenamecif

cdrcscript basename.cif dre [-kul basename.cif [lambda]
drscript basename cif

DESCRIPTION
Cdrc analyzes a CMOS CIF file for geometric rule violations using MOSIS cmos-bulk 3 micron
process rules. Drc analyzes an NMOS CIF file for geometric rule violations using MOSIS
(buried contact) rules. Both cdrc and drc are limited to rectilinear, orthogonal geometry.
Wires are taken apart into rectangles, and round flashes are approximated by squares.
Polygons and non-manhattan rectangles are simply ignored.

The options are as follows:

-k Keep around all intermediate files.

-0 Keep around files of unfiltered error messages.

For large files, cdrc or drc should be run in batch mode, as a 7000 transistor chip takes over 2
11/780 cpu hours.

When cdrc or drc find violations, they create CIF files of rectangles marking the geometric
edges involved. Thesc markers are placed on the error layer (CZ) for cdrc and on the glass
layer for drc. Separate files are created for each class of error, named err.errorsypebasename.

To abort cdrc or drc hit the BREAK key and wait while it outputs some error messages until it
eventually quits.

(C)drcscrips will merge {c)drc output files, labels indicating eiror type, and the original CIF
file into a single file, drcbasename.cif. If this file is processed by cif2ca the results may be
viewed with caesar. Errors show up as light blue boxes in the error layer for cdrc or as
orange boxes in the glass layer for drc. Each pair of boxes involved in an error will have an
associated errortype label which will be located at the midpoint between the centers of the
two boxes.

MOSIS CMOS/BULK 3 micron process rules checked by cdrc:

Errortype Microns Rule
wWp 3 P-Well width
sWp 9 P-Well to P-Well spacing assuming all p-wells are

connected to vss
dW 4 Diffusion size
dS 4 P+ diffusion to P+ diffusion spacing

4 N+ diffusion to N+ diffusion spacing
4 N+ diffusion to P+ diffusion spacing outside P-well
4 N+ diffusion to P+ diffusion spacing inside P-well

pWp+DS 8 P+ diffusion in N-substrate to P-well edge spacing
Wpn+WnS 7 N+ diffusion in N-substrate to P-well edge spacing
pWn+DS 4 N+ diffusion in P-well to P-well edge spacing
pW 3 Poly width

PS 3 Poly to poly spacing
pSd 2 Field poly to diffusion spacing
pOg 3 Poly gate extension over field
gpSd 3 Gate poly to diffusion spacing
p+Od 2 P+ mask overlap of diffusion

2 N+ mask to P+ diffusion spacing

UW/NW VLSI Release 2 1 6/4/84



CDRC ( 1.VLSI) VLSI CAD Tools Manual CDRC (1.VLSl)

Tn +S 3.5 P+ mask overlap of poly in diffusion
p+S 3 P+ mask to P+ mask spacing in diffusion

3 N+ mask to N+ mask spacing in diffusion
Errortype Microns Rule
Dp+s 2 P+ mask to N+ diffusion spacing

2 N+ mask overlap of diffusion
Tp+s 3.5 N+ mask overlap of poly in diffusion P+ mask to

poly spacing in diffusion inside P-Well
bcut Cut must have metal and (poly or diffusion) underneath
wC 3 Contact width
cL 8 Maximum contact length
cS 3 Contact to contact spacing
pOc 2 Poly overlap of contact
PMCx 2.5 Poly overlap of contact in direction of metal
cSpc 3 Contact to poly channel spacing
mOc 2 Metal overlap of contact
dOc 2 Diffusion overlap of contact
cp+s 3 Contact to P+ and N+ mask spacing
scfp+ 4 Shorting contact extension into P+ diffusion
scfn+ 4 Shorting contact extension into N+ diffusion
mW 3 Metal width
mS 4 Metal to metal spacing
m2w 5 Metal2 width
m2S 5 Metal2 to meta2 spacing
c2w 3 Via width
c2S 3 Via to via spacing
m20c2 2.5 Metal2 extension over via
mOc2 2.5 Metal extension over via
CC2s 3 Via-cut separation
dOv 3 Diffusion overlap of via
dSv 3 Diffusion to via spacing when they dont overlap
pOv 3 Poly overlap of via
pSv 3 Poly to via spacing when they dont overlap
M2Pst 1 Metal2, metal and poly intersection 1 width
MPMM2x 4 Metal extension over the above intersection
PPMM2x 3 Poly extension over the above intersection
PM2st 5 Metal2 metal intersection(no poly) to metal2 poly

intersection( with no metal ) spacing
MPM2st 5 Metal2 poly intersection (no metal) to metal spacing
PPM2st S Metal2 metal intersection (no poly) to poly spacing

NMOS rules checked by drc:

Errortype Rule Lambda
dS diffusion spacing 3.0
iOg implant-gate overlap 1.5
iSg implant-gate spacing 2.0
pS poly spacing 2.0
pOg poly-gate overlap 2.0
pSd poly-diff spacing 1.0
cS cut-cut spacing 2.0
dcSg diff-cut to gate 2.0
mW metal width 3.0
iNOg implants with no gates

V/NW VLSI Release 2 2 6/4/84

• . - , -. . . . -.. .- . .. / .. -.. . ..'.- .... -.- ,. . ,.... - ,....- .. -; .' *. " .-. ' - . ,-,...-.... .,,..: .: . . .
. ... . .......-." '.'..-, .'..:..,' -'.,.,.'.. .,. .. . ,, "".. , . .,,', "," " ,a t "- -._, ,%e. ; :_ . .,-., ,: , -. ._



CDRC ( l.VLSI) VLSI CAD Tools Manual CDRC ( I.VLSI)

XC cuts with no D or P
dW diffusion width 2D
ntdW non-xtr diff width 2.0
iS implant-implant 1.5
pW poly width 2.0
gW gate width 2.0
cW cut nin width 2.0
cL cut max length 6.0
mOc metal-cut overlap 1.0
dOc diff-cut overlap 1.0
pOc poly-cut overlap 1.0
sBP buried-poly spacing 2.0
sBD buried-diffusion spacing 2.0
oBD buried-diffusion overlap 2.0
oBU buried-contact surround 1.0
bW buried-contact width 2.0

SEE ALSO
caesar(cadl), cif2ca(cadl)

A Geometric Design Rule Checker, Dorothea Haken, VLSI Document V053, Carnegie Mellon, 9
June 1980.

FILES
basename.cif
errerrortypebasename
drcbasename cif
errbasename.cif

AUTHOR
Dorothea Haken (CMU)

BUGS
The poly-overlap-gate check fails when the overlap is exactly zero (drc only).

Spacing checks do not consider mutual connectivity. Sometimes weird things will happen, and
the generated spurious errors can be filtered by the bin filter program, which examines local
connectivity. Cuts in diffusion or poly that do not have metal covering are not rcportcd.

Cuts in diffusion or poly that do not have metal covering are not reported (drc only).

Diagonal spacing checks do not consider the true diagonal distance.

SUGGESTIONS
Do not have basenames beginning with a number. Otherwise, this leads to serious errors in
that cdrc assumes that to be the lambda value.

Try to have as short a basename as possible. This is because some flavors of UNIX restrict the
length of filenames. Some of the intermediate files that are generated have quite long names.

The default lambda is 50 centimicrons for the cdrc routines. This scaling is done to overcome
the inability of the routines to check for non-integer lambda violations.

It is advisable to run (c)drc in the background (batch mode), directing the output to a file, so
you can look at the file later if needed.

UW/NW VLSI Release 2 3 614/84

...-...-..... .. ...... .... "........



3

CIF2CA (CAD) UNIX Programmer's Manual CIF2CA (CAD)

NAME
cif2ca - convert CIF files to CAESAR files

SYNOPSIS
clf2ca [ -1 lambda ] [-t tech ] [ -e offset I ciffile

DESCRIPTION
cif2ca accepts as input a cuz file and produces a CAESAR file for each defined symbol. Specify-
ing the -I lambda option scales the output to lambda cenli-microns per lambda. The default
scale is 200 centi-microns per lambda. The -t tech option causes layers from the specified
technology to be acceptable. The default technology is nmos. For a list of acceptable techno-
logies, see caesar (1). The -9 offset option causes all CIF numbers to be incremented by
offset. This is useful when the CIF numbers are used for Caesar file names, and when several
CIF files with overlapping numbers are to be joined together in Caesar.

Each symbol defined in the CIF file creates a CAESAR file. By default, the files are named
"symbolmca", where m is the CIF symbol number (as modified by the -o offset). Symbols can
also be named with a user-extension "9" command, giving a name to the symbol definition
which encloses it. CP commands which appear outside of symbol definitions are gathered into
a symbol called, by default, "project", and are output to the CAESAR file "project.ca".

* SEE ALSO
caesar(1)

DIAGNOSTICS
Diagnostics from cif2ca are supposed to be self-explanatory. Each diagnostic gives the line
number from the input file, an error class (informational, warning, fatal, or panic), the error
message, and the action taken by cif2ca, usually to ignore the CF command. Informational
messages usually refer to limitations of cif2ca. Warning messages usually refer to inconsisten-
cies in the Cef file, these will typically rcsult in CAESAR files which do not accurately reflect
the input CIF file. Fatal messages refer to fatal inconsistencies or errors in the C[F file. A fatal
error terminates cif2ca processing. Panic messages refer to internal problems with cif2ca. If
any diagnostics are produced, a summary of the diagnostics is produced.

AUTHOR
Peter B. Kessler, bug fixes and new features by John Ousterhout and Stcve Rubin.

BUGS
"Delete Definitions" commands are not implemented. cif2ca also has certain restrictions due
to restrictions of CAESAR: e.g. non-manhattan objects are not allowed.

Library cells are not automagically included.

Some care should be taken in naming symbols, since symbol names are used for CAESAR file
names. Names which are not unique in the first 14 characters will attempt to create the same
CAESAR file, and only the last one wins. Similarly, one should avoid trying to have two
project ca files in the same directory.

4th Berkeley Distribution local I



7 7.. 7- U- WV R -1 T T 1 -- 

* CIFPLOT (CADI) UNIX Programmer's Manual CIFPLOT(CAD1)

NAME

cifplot - CIF interpreter and plotter for displaying VLSI circuits

SYNOPSIS
citplet [optloM) fie] it Vile? .f2 ...]"

DESCRIPTION
Cifplot takes a description in Cal-Tech Intermediate Form (CIF) and produces a plot. CIF is
a low-level graphics language suitable for describing integrated circuit layouts. Although CIF
can be used for other graphics applicatious, for ease of discussion it will be assumed that CIF
is used to describe integrated circuit designs. Cifplo interprets any legal CIF 2.0 description
including symbol renaming and Delete Definition commands. In addition, a number of local
extensions have been added to CIF, including text on plots and include files. These are dis-
cussed later. Care has been taken to avoid any arbitrary restrictions on the CIF programs that
can be plotted.

To get a plot call cifplot with the name of the CIF file to be plotted. If the CIF description is
divided among several files call cifplo with the names of all files to be used. Ciapiot reads the
CIF description from the files in the order that they appear on the command line. Therefore
the CIF End command should be only in the last file since cifplot ignores everything after the
End command. After reading the CIF description but before plotting, efplot will print a esti-
mate of the size of the plot and then ask if it should continue to produce a plot. Type y to
proceed and a to abort. A typical run might look as follows:

% cfplot llb.cl srtercif
Window -5700 174000-76500 168900
Scale: I micron is 0.004075 inches
The plot will be 0.610833 feet --

Do you want a plot? y
After typing y cifplot will produce a plot on the Benson-Varian plotter.

Cifplot recognizes several command line options. These can be used to change the size and
scale of the plot, change default plot options, and to select the output device. Sev-.ral options
may be selected. A dash(-) must precede each option specifier. The fotlo-. ag is a list of
options that may be included on the command line:

-w xmin znar ymln ymax
(window) This option specifies the window; by default the window is set to be large
enough to contain the entire plot. The windowing commands lets you plot just a small
section of your chip, enabling you to see it in better detail. Xmin, xmax, ymin, and
ymax should be specified in CIF coordinates.

-s float
(wale) This option sets the scale of the plot. By default the scale is set so that the
window will fill the whole page. Float is a floating point number specifying the
number of inches which represents 1 micron. A recommended size is 0.02.

-1 layerlist
(layer) Normally all layers are plotted. This option specifies which layers NOT to plot.
The layerlist consists of the layer names separated by commas, no spaces. There are
some reserved names: ailText, bbox, outline, text, polntName, and symbolName.
Including the layer name aiffext in the list suppresses the plotting of text; bbox
suppresses the bounding box around symbols. outline suppresses the thin outline that
borders each layer. The keywords text, pointName, and symbolName suppress the
plotting of certain text created by local extension commands. text eliminates text
created by user extension 2. politName eliminates text created by user extension 94.
*yMbolName eliminates text created by user extension 9. allText, polntName, and

O'h Berkeley Distribution 6/1/84

.................... .....................



CIFPLOT(CADI) UNIX Programmer's Manual CWPLOT(CADI )

symbolName may be abbreviated by at, ps, and u repectively.

-c a (copies) Makes a copies of the plot. Works only for the Varian and Versatec. Default
is I copy.

-dn (depth) This option lets you limit the amount of detail plotted in a hierarchically
designed chip. It will only instanciate the plot down n levels of calls. Sometimes too'

much detail can hide important features in a circuit.

s (rd) Draw a grid over the plot with spacing every n CIF units.

-h (halt) Plot at half normal resolution. (Not yet implemented.)

-e (eaternions) Accept only standard CIF. User extensions produce warnings

-1 (mor-Kteractive) Do not ask for confirmation. Always plot.

-L (List) Produce a listing of the CIF file on standard output as it is parsed. Not recom-
mended unless debugging hand-coded CIF since CIF code can be rather long.

-a a (approumate) Approximate a roundflash with an n-sided polygon. By default n equals
8. (Le. roundflashes are approximated by octagons.) If u equals 0 then output circles
for roundflashes. (It is best not to use full circles since they significantly slow down
plotting.) (Full circles not yet implemented.)

-b 'text'
(banner) Print the text at the top of the plot.

-C (Comments) Treat comments as though they were spaces. Sometimes CIF files created -
at other universities will have several errors due to syntactically incorrect comments.
(I.e. the comments may appear in the middle of a CIF command or the commen: does
not end with a semi-colon.) Of course, CIF files should not have any errors and these
comment related errors must be fixed before transmitting the file for fabrication. But
many times fixing these errors seems to be more trouble than it is worth, especially if
you just want to get a plot. This option is useful in getting rid of many of these com- -"I
ment related syntax errors.

-r (rotate) Rotate the plot 90 degrees.

-N (Printronhi) Send output to the Printronix.
-V (Vartan) Send output to the Varian. (This is the default option.)

-W (Wide) Send output directly to the Versatec.

-S (Spool) Store the output in a temporary file then dump the output quickly onto the
Versatec. Makes nice crisp plots; also takes up a lot of disk space.

-T (Terminl) Send output to the terminal. (Not yet fully implemented.)

-Gh
-Ga (Graphics terminal) Send output to terminal using it's graphics capablities. -Gh indi-

cates that the terminal is an HP2648. -Ga indicates that the terminal is an AED 512.

-X basenag
(eXtractor) From the CIF file create a circuit description suitable for switch level
simulation. It creates two files: bas e.dm which contains the circuit description,
and basenamenode which contains the node numbers and their location used in the
circuit description.

When this option is invoked no plot is made. Therefore it is advisable not to use any
of the other options that deal only with plotting. However, the -w, -I, and -a options
are still appropriate. To get a plot of the circuit with the node numbers call ci plot
again, without the -X option, and include baseame.nodes in the list of CIF files to be

i Berkeley Distribution 6/1/84 2

.--.- -- , ..... .



- ----- - - - - - - . - - - 'r ~ ' r - - -

CIFPLOT (CADI) UNLX Programmer's Manual CIFPLOT(CADI)

plotted. (This file must appear in the list of files before the file with the CIF End
command.)

--e a (ceplhs) This option specifies the number of copies of the plot you would like. This
allows you to get many copies of a plot with no extra computation.

-P patternfile
(Patter.) This option lets you specify your own layers and stipple patterns. Patternf ie
may contain an arbitrary number of layer descriptors. A layer descriptor is the layer
name in double quotes, followed by 8 integers. Each integer specifies 32 bits where
ones are black and zeroes are white. Thus the 8 integers specify a 32 by 8 bit stipple
pattern. The integers may be in decimal, octal, or hex. Hex numbers start with ft';
octal numbers start with '. The CIF syntax requires that layer names be made up of
only uppercase letters and digits, and not longer than four characters. The following
is example of a layer description for poly-silicon:
fNP 0%08080808 0%04040404 0x02020202 0z01010101

0x808060 040404040 0x2020202 xl0101010

-F fonfiyleimw
(Fat) This option indicates which font you want for your text. The
fonef!len ame must be in the directory /irlibvfont. The default font is Roman
6 point. Obviously, this option is only useful if you have text on your plot.

-0 filename
(Output) After parsing the CIF files, store an equivalent but easy to parse CIF
description in the specified file. This option removes the include and array commands
(see next section) and replaces them with equivalent standard CIF statements. The
resulting file is suitable for transmission to other facilities for fabrication.

In the definition of CIF provisions were made for local extensions. AU extension commands
begin with a number. Part of the purpose of these extensions is to test what features would
be suitable to include as part of the standard language. But it is important to realize that
these extensions are not standard CIF and that many programs interpreting CIF do not recog-
nize them. If you use these extensions it is advisable to create another CIF file using the -0
options described above before submitting your circuit for fabrication. The following is a list
of extensions recognized by cifplot.

01 filename;
(Include) Read from the specified file as though it appeared in place of this command.
Include files can be nested up to 6 deep.

OA smndxdy;
(Array) Repeat symbol s m times with dx spacing in the x-direction and a times with
dy spacing in the y-direction. s. m. and n are unsigned integers. dx and dy are signed
integers in CIF units.

1 message;
(Print) Print out the message on standard output when it is read.

2 "texe transform;
2C 'text transform;

(Text on Plot) Text is placed on the plot at the position specified by the transforma-
tion. The allowed transformations are the same as the those allowed for the Call com-
mand. The transformation affects only the point at which the beginning of the text is
to appear. The text is always plotted horizontally, thus the mirror and rotate transfor-
mations are not really of much use. Normally text is placed above and to the right of
the reference point. The 2C command centers the text about the reference point.

4th Berkeley Distribution 6/V84 3



CIFPLOT(CAD1) UNIX Programmer's Manual CIFPLOT(C.ADl)

9 none;
(Name symbol) nowe is associated with the current symbol.

94 niame xy;

94 namezxy layer;
(Name point) name is associated with the point (x. y). Any mask geometry crossing
this point is also associated with namte. If layer is present then just geometry crossing
the point on that layer is associated with name. For plotting this command is similar
to text on plot. When doing circuit extraction this command is used to give an explicit
name to a node. Name must not have any spaces in it, and it should not be a number.

FILM8
cad).cadrc:
-/.cadre
-cad/bin/vdump

/usrllib/vfont/R.6
/usr/tMPlnftif*

SEE ALSO
cadrc(cadS)
A Guide to LSK Imnplementatiom, Hon and Sequin, Second Edition (Xerox PARC, 1980) for a
description of CIF.

AUTHOR
Dan Fitzpatrick (UCB)

MODIJICATIONS
(UWINW VLSI Consortium, University of Washington)

BUGS
* - The -r is somewhat kludgy and does not work well with the other options. Space before
* semi-colons in local extensions can cause syntax errors.

* The -0 option produces simple cif with no scale factors in the DS commands. Because of this
you must supply a scale factor to some programs, such as the -1 option to caf2ca.

The -X option does not work for non-manhattan circuits.

g4th Berkeley Distribution 6/11844



DECNOR ( 1.VLSI) VLSI CAD Tools Manual DECNOR ( 1.VLSI)

NAME
decNor - Generates CMOS dynamic NOR form decoder layouts.

SYNOPISM
decNer [option Inputs [OutFile j

DecNor is a program for generating CMOS dynamic NOR form decoder layouts in the acaesar

format. DecNur constructs caesar composition cells from caesar leaf cells and/or other compo-
sition cells. All caesar cells reside in the Jca directory. Leaf cells have names of the form
decNor_*.ca while composition cells have names of the form OutFile's.ca. Leaf cells must be
copied from SUWVLSI TOOLS/libgenerators/decNor into Jca before running decNer. The
completed layout reides in 'OutFile".ca. Inputs are the number of inputs to the decoder.
"OutFile can not begin with the string "decNor. The default for "OutFile is the string
"decGen9 .

As deNer is a cl-based program it creates iles of the form .. bd in Ica.

The following table describes decNor's options although an abreviated listing can be obtained
by invoking de.Ner with no arguments. Options prepended by '-" are active while those with
'0 have not been implemented.

-t Stripped down layout for floor planning. Cells which occupy a large part of the
decoder are represented in dummy layers allowing faster layout generation.

-t Layout of worst case path for timing estimates. Cells which are not part of the
slowest electrical path are represented in dummy layers allowing faster generation,
extraction and simulation.

-6 A schematic of the decoder. Cells are represented as symbols (wires and transistors)
drawn in black ink (labels) on a yellow background (P+ mask).

OP P-type decode transistors. Since N-type transistors have a lower on resistance they are
the default decode transistor type.

-1 Labels are added to inputs and outputs. Since labels increase the generation time they
are not added as the default. When included they are prepended with "OutFile.

-b banks
The array of decode transistors will be repeated ' banks " times. This feature can be
used to distribute decoder outputs to a number of places with minimal additional area.
Default is one.

*. outs
Stretch decoder to give * outs lambda output spacing. This option simplifies connec-

. tion by abutment.

.1 Ins
Grow decode xsistors to give ' ins * lambda input spacing. This option allows the
decoder to operate faster.

ov vet
Grow input inverters to fill vertical size of vet lambda. This option allows the
decoder to operate faster.

.h hop
Grow evaluate/charge isistors to fill horizontal size of * hoe lambda. This option
allows the decoder to operate faster.

UW/NW VLSI Release 2 1 6/1/84



DECNOR( 1.VLS[) VLSI CAD Tools Manual DECNO,( I.VLSI)

lca/0utFile..ca
Jca/OutFileo.bd
Jca/decNor..ca

SEE ALSO
caesar(CADI), cff(5.vlsi)

AUTHORS
David J. Morgan

UW/NW VLSI Release 2 2 6/184



EQNTOTT (1) UNIX Programmer's Manual EQNTOTT (1)

NAMEg"
eqntott - generate truth table from Boolean equations 

L

SYNOSS
eq.ttt [ -,1 [41 [-@ J[r [- Il I [-key ] [cc options ] (files ]

DESCRIPTION
Eqnsott generates a truth table suitable for PLA programming from a set of Boolean equations
which define the PLA outputs in terms of its inputs. When neither -f nor -s is specified, input
and output variables must be mutually exclusive. If the -s option is given, an output variable
may be used in an expression defining another output variable: the expression for the first out-
put is substituted for the the name of that output when it is encountered. The -f option
allows outputs to be defined in terms of their previous values in a synchronous system (e.g. an
FSM): the same name appearing as both an input and an output may be thought of as refer-
ring to two distinct variables, or the same variable at two distinct times. (The -f and s
options are mutually exclusive.)
If the -r option is specified, eqraon will attempt to reduce the size of the truth table by meri-
ing minterms. The -R option (implies -r) forces eqmon to produce a truth table with no
redundant minterms. The truth table generated does not represent a minimal covering of the
truth functions, but does preserve some "don't care" information for some other program to
Use.

If the -1 option is specified, eqntott will output a truth table which includes the name of the
pla and its inputs and outputs as specified in PLA(S).

The form that the output takes is controlled by the string key, described below. Input is taken
from files (standard input default) and run through the C macro preprocessor of cc(1), to per-
mit comments, file inclusion, macros, and conditional processing. The cc options -D, -1, and -U %
are recognized and passed on to the preprocessor.

Equstim Syatar:

name = expression;
Associates a truth function defined by expression with the output name, both of which
are defined below. If an output name is assigned more than one expression, the effect
is identical to a single assignment to the output of the logical disjunction of all the ori-
ginal expressions.

NAME - name
Defines the name of the pla to be 'namee. If not specified, the name of the pla is the
name of the input file with any postfixes removed.

INORDER = name [namel...;
Defines the order in which inputs appear in the truth table. If not specified, the order
is that in which the inputs appear in the source.

OUTORDER = name [name]...;
Defines the order in which outputs appear in the truth table. If not specified, the
order is that in which the outputs appear in the source.

*iprewle Syntax:

name
A name is used to specify an input or output. The name must begin with a letter or
underscore; subsequent characters may be letters, digits, underscores, asterisks, " "
periods, square brackets, or angle brackets.

7th Edition 1

2I............................ ' .*-.,.- . . .
.'.. ,'," -... '. .'" '..'."- " . " " , , " . :'.." ,'-:" ' .''.:, ,',' -. ' ', .,- ., '... -. ",



EQNTOTT (1) UNIX Programmer's Manual EONTOTT (l)

ZERO (or 0)
Builtin input that always has the value zero (false).

ONE (or 1)
Builtin input that always has the value one (true).

Builtin input that always has the value 'don't care'.

(expression)
Parenthesis may be used to change the order of evaluation.

expression
Gives the complement of expression.

expression & expression
Gives the logical conjunction of the two expressions The & operator associates left to
right, and has the same precedence as L

expression I expression
Gives the logical disjunction of the two expressions. The I operator also associates left
to right, and has a lower precedence than &.

Output Frmt

The output format may be controlled to a small extent using the character string key. The
string is scanned left to right, and at each character code, a piece of output is generated
corresponding to the character encountered. If -.key is not specified, the string "iopte" is used,
or 'iopfte" with the -f option.

code output generated
S0 .0

f .r output-number input-number
(one line for each feedback path, numbers refer to Or- and And-plane truth table
column numbers)

b a human readable version of the truth table (q.v.)
I .1 number-of-inputs
1 .1 input-nane

(one line for each input, in order)
I a truth table with the name of the pla, its inputs and its outputs
p .p number-of-product-terms
a -a number-of-product-terms
0 .0 number-of-outputs
0 .0 ouput-name

(one line for each output, in order)
S PLA connectivity summary
t PLA personality matrix (q.v.)
v eqntott version information

The truth table (personality matrix) consists of a line for each minterm, beginning with that
minterm and followed by the values of the various outputs. The minterm is composed of a
single character (0, 1, or -) for each input in the conventional fashion. The output values are
represented by one of the three characters (0, 1, or x). Some white space is added for
readability's sake.

7th Edition 2



EQNTOTT (1) UNIX Programmer's Manual EQNTOTT (1)

In the human readable format, each line of output represents one term in the sum-of-products
expression for an output. The line begins with the name of the output, which is enclosed in
parentheses for the value 'don't care". Then follow the names of the inputs in the product;
complemented inputs are preceded by a I.

SEE ALSO
cc(1).

DIAGNOSTICS
Syntax errors are written to the standard error output and should be self-explanatory.

BUGS

-1 should be the default, but some pla tools can't handle the full format. Eqntott likes its
V-..

option seperately; ie. -f -1 works but -ft doesn't.

AUTHOR
Bob Cmelik.
-1 option added by Jeff Deutsch.

7th Edition 3

-. .. .



GEN_CONTROL (1.VLSI) VLSI CAD Tools Manual GEN-CONTROL ( I.VLSI)

NAME
gen control - generate a control file for RNL

SYNOPSIS:
gencontrol
(no arguments)

DESCRIPTION
gen control is a program designed to quickly specify a control file for RNL simulation.
gen_control provides for the proper insertion of quotes and use of parenthesis.

Typical file extensions to the basenames are assumed.

When starting up the geuncontrol program, the user will be prompted for the necessary
information to be provided.
Assumed standard libraries are:

uwstdJ & uwalmJ

Prompts:

1. Basename:
The control file will be written in: basename
In the J or control file assumed extensions are:

for the log file: basenane.rlog
for the network: basename
for the plotfile: bauenanbeh

2. Comment:
A one line comment, which could be a short comment about the simulated circuit can be
entered.

3. Simulation step increment value:
Enter the value of the simulation step in 0.1 ns units. The appropriate lisp command is
automatically generated.

4. Definition of normal vectors:
To define a vector enter its name.
Then there will be a prompt for its type (bit, bin, oct, hex,dec)
Followed by a prompt for its elements.
A < CR> means skip this entry.

5. Definition of single indexed vectors:
Enter basename and after prompts: type, start index and number of elements.

6. Definition of a set of double indexed vectors:
Enter basename and after prompts: type, indexsizel and indexsize2.

7. Definition of report for end of simulation step:
One of two types can be specified:
Just a < CR> specifies the normal def-report contents;
<any character> < CR> specifies an optional type in which multiple vectors with double
indexed nodes can be specified.

. . -. -.*Next there will be a prompt for a comment to be included in every report (this portion only is

"'I "/NW VLSI Release 3 106/01185

.. .. ; . .. ... . .... . . ... .. . . . . . . . . . ,. . . . . . . .-- : -;..,........,......... , -.- .. . ,.. -. ,



GENCONTROL ( 1.VLSI) VLSI CAD Tools Manual GEN CONTROL ( I.VLSI)

optional).
Then there will be prompting until a < CR> is entered for

nodenames (just enter the names) or
a vector name (first enter 'vec' and then the name).

In case of the optional report format, the multiple vector specification format is obtained by
reponding with 'veci'. Additional prompts will follow for basename and size.

8. Selection of output mode: logic analyzer style output:
Enter any character for selecting logic analyzer style output and a <CR> for standard out-
put.
A report stating the order of columns in the output of RNL will be automatically generated.

9. Selection of output mode: glitch detection reporting:
Enter any character for selecting glitch detection and a <CR> for standard reporting of
transients.

10. Definition of nodes with transient or glitch reporting:
Individual node names, vectors with single indexed node names and vectors with double
indexed node names can be specified. Respond appropriately for names vectorsizes.

11. Definition of logic trigger conditions:
There are prompts for defining trigger conditions on individual node names, single vectors in
invec ipe format, and single vectors in bitinvec type format.

12. Definition of additional RNL simulation set-up commands:
Enter the desired RNL commands. Terminate with an additional < CR>.

13. Definition of a timing pattern file:
Respond with < CR> if there is no such file (unlikely) or any other character if such is the
case.
The filename assumed is: bmeame.thim

14. Definition of wrap-up RNL commands:
Enter the desired simulation wrap-up commands (often just 'exit').
There is no syntax checking in gen control. gen control will put the quotes and parentheses at
the right places. Any errors can be easily corrected using a standard text editor on the output
file: basenamel.
This file can be inspected for correctness. Errors may be reported by RNL when running the
simulation.

FILES
The output file is an ascii file and can be inspected. The files containing the library functions,
network etc. must be at the correct place.
uwstd J, uwsimJ, basenameJ, basename, basenamerlog, basename.beh, basename time

SEE ALSO
gen.ime manual instructions

UW/NW VLSI Release 3 2 06/01/85

. . . .-. . -.. . .. . - . . , / . . - . ,, - . .



GENCONTROL (1.VLSI) VLSI CAD Tools Manual GEN-CONTROL (I.VLSI)

~' '- ~ AUTHOR
Henriecus Koeman, John Fluke Mfg. Co., Inc.

DIAGNOSICS
none

BUSPlease let the author know.

*UWINW VLSI Release 3 3061/517



GENTIME ( 1.VLSI) VLSI CAD Tools Manual GENTIME ( 1.VLSI)

NAME
gen_time - generate a stimulus pattern for ml.

SYNOPSIS
gen time lnpatUIle oaapua file

DESCRIPTION
gen time is a program designed to quickly specify input signal patterns which can be read by
the lisp command interpreter of RNL. gentime accepts a simple syntax without quotes and
parentheses and accepts a simple means for defining states or commands for specific moments
in time. The output of gentime is typically read by the main control file, which contains the
set-up information for the simulation. This control file can easily be obtained using the
gen control program. One of the commands should 'load' the outputfile of gen time.

Syntax summary:
time-range < starttime> < stop..time>

(must be the first command)
node..name < period> < statel> < timel> < state2> < time2> ...
invec < vector name> < period> < valuel> < timel> ....
bitinvec < vector-name> < period> < bitvaluesl> < timel>

(note no spaces between individual bitvalues as in the
equivalent nl command.)

command <period> < mnl commandl> <time!> .....
(no alternate syntax allowed in nil_commands here)

report <period> < timel> < time2> .....
(report 1 0 generates a report after every time
step)

(must be the last command in the inputfile)
mask < period> < enable time> < disable-time>

(applies only to command line immediately following)
maskinv <period> < disabletime> < enabletime>

(applies only to command line immediately following)

FILES
The output file is an ascii file and can be inspected for programmed activity as a function of
the time increments.

FURTHER EXPLANATIONS
The rules for the input file are discussed in more detail in the following, in particular those
for the more complex waveforms.

Rule 01: Comments.
g All lines starting with a semicolon are considered comments and are ignored.

Rule 02: Simulation interval definition must come first.
The first command in the stim file must be the specification of the simulation interval; syntax
and example:

timerange <start-time> <stopjime>
timerange 0 50

Note: Every value of time is in number of simulation step increments 'incr'. The global
variable 'incr' is assigned a value with (setq incr <number>) where the number is

UW/NW VLSI Release 3 1 06/01/85

-~~~~ ~~~.-. .... . ............ . ...... . ...... ,....-.. ..... . ..,..• .-.-....-- ,.. ,,.-. .., ,,,,,., .. . -...
i ,-~~~~~.....-... ..-.... ... .. . . . -.-....... --.... .:,. . ,..;_,1r. .. :- L"



GENTIME ( 1.VLSI) VLSI CAD Tools Manual GENTIMF ( 1.VLSI)

the size of the simulation step in 0.1 ns; this is done in the ('.1Y) RNL control file.

Rule 03: The report definition must come last.
The last command in the stim file must be the specification of how often RNL should print a
report (using the def-report specification); syntax and examples:

report < period> < timel> < time2> ....
report 2 1 (report every 2 simulation steps at the end of interval 1; which

occur at t=2, 4, 6, etc.)
report 10 3 6 9 (report every 10 simulation steps at the end of intervals 3,6 and 9:

t=4, t=7, t=10, t=14, t=17, t=20 etc)
report 1 0 (report at the end of every simulation step)

Rule #4: How input signals are specified.
Signals are defined in one of the following ways:

nodename (states must be I. h, u or x)

invec vectorname (states must be a numerical type:
decimal, octal (leading '0),
hexadecimal (Ox....) or binary (Ob...))

bitinvec vectorname (states can be any combination of 1,0,u and x; no spaces between the
elements)

followed by:
the period, and a number of combinations:

<state> <time>

If the period is '0 the specification relates to a one time event (the period is really infinity.).

Syntax and example for a simple waveform definition for simple node:
node-name < period> < statel> < timel> < state2> < time2> .....
node-namel 10 h 0 1 2 u 5 x 8

period is 10 simulation steps, signal h at t=0, I at t=2, u at t=5 and x at t=8;
signalchanges repeat themselves at t=10, 12, 15, 18, 20, 22, etc..

Syntax and examples for a numerical vector definition (no undefined states can be specified in
this case.):

invec vectorname <period> < statel> < time1> .....
invec name 10 Oxa 0 blill 2 07 5 3 8

period is 10 simulation steps, vector is the hexadecimal 'a' at t=0, binary 1111 at t=2,
octal "7" at t=5 and a decimal '- at t=8. Again, the pattern is repeated 10 simulation
steps later.

invec name 00xa 0 15 5 017 9
The pattern is a single event: name is hexadecimal 'a' at t=0, a decimal "15' at t=5; an
octal '17" at t=9. This pattern does not repeat itself!

Syntax and examples for a bitvector definition:
bitinvec < vectorname> <period> < statel> ......
bitinvec vectorname 20 0000 0 1111 5 uuuu 10 xxxx 15
bitinvec vectorname 10 Oxlx 0 uOOx 5

UW/NW VLSI Release 3 2 06/01/85



GEN-TIME (I.VLSI) VLSI CAD Tools Manual GENTIME( I.VLSI)
1w

Rule #$: Use of regular RNL commands allowed only with standard lisp syntax.
RNL commands can also be inserted in the same manner as node and vector stimulus; only
the standard ml syntax (with parentheses is allowed):

syntax:
V command < period> < (rnlcommandl)> < timel> .......

Role #6: Masking of input signals and commands.
Except for the time-range command ALL genjime commands are subject to mask commands,
with will blank out the impact of the next command line immediately following the mask com-
mand line. After processing this next command line the mask is reset to a default which is a
full enable. There are two mask commands:

'mask' and 'maskinv'

'mask' and 'maskinv' themselves are defined as having a period (a one time mask has a period
of '0') and only I enable and only I disable time.

syntax:
mask < period> < enabletime> < disabletime>
maskinv <period> <disable time> <enable time>

Example:
mask 0 10 20
node2 5 h 0 1 5 u 10 x 15

will blank out any activity from node2 before
time increment 10 and after time increment 20.

maskinv 0 10 20
node3 5 h 0 1 5 u 10 x 15

will allow only node3 statements to be
effective before time increment 10 and
after time increment 20.

The commands scheduled for the time coinciding with the enable time of the mask will be
effective, while the commands schedule for the time coinciding with the disable time will be
disregarded.

Example of a typical stimulus file:
Timing file for basic CRC Counter
Simulation time:

time-range 0 36
Run the clock at all times:

cl 2 10 h I
Reset:
0 r~h 011
The following sequence is designed to exercise all nodes!

in 0 1 0 h 2 112 h 201 26 h 28 1 32 h 34
; We will start reporting the unchanged nodes just before
; the last ff changes state, which is at time increment 32:
mask 0 32 36
command 1 (printf "nodes unch:%%n" (unchanged-since 100)) 0

We report the state after every simulation step:
report 10

UW/NW VLSI Release 3 3 06/01/85

A .dE



GENTIME (I.VLSI) VLSI CAD Tools Manual GENTIME ( 1.VLSI)

USING PATFERNS DEFINED USING GENTIME.
The output file from gen_time with the shell command:

gentime basenamestim basename.time

Within the regular RNL control file (basename.l) one should include:

AUTO (load "bname.time)

~AUTHOR

Henriecus Koeman, John Fluke Mfg. Co., Inc.

DIAGNOSICS I
In case of an error in the inputfile gentime will most likely print the first line number and
the line itself where the error was detected and then terminate prematurely.

BUGS
Please let the author know.

J

i UW/NW VLSI Release 3 4 06,01/85

,' ,• .",••","."." ., . ., ..., ' .. '''''''" " , '' :*" .," ,"." ' .-, "' ,. , "''': -"' " " " " """"" ' "
,,/. / .. ... .-. ... .. . . .,. -.. :.,.,... ...-.. ....., :/ ... , . ......., . .,. -, , - _., . , : ,. ._ , . •,, ,, '" '',.' ,'," ',,'J. ';, ',._.:'__'. l~ t ---



LYRA(CAD) UNIX Programmer's Manual LYRA(CAD)

NAMe
lyra - Performs hierarchical layout rule check on caesar design.

SYNOPSI
lyra [-vl [-o output) [-p path) [-r ruleset) [-4 technology] rootCaesarFile,
or
-- m - [- technology] [-r ruleset]

DESCRIPTION
Lyre has two modes of operation: it can be invoked directly to perform a batch hierarchical
check of a caesar design, or from the Caesar (or Kic) layout editor to interactively check a
portion of the design currently being edited.

In batch mode, a hierarchical check of the caesar design rooted at rootCaesarFile is done. A
log, including a summary cf errors is written to stdout, and a lyra file "namely" is created for
every cell "name.a" in which design rule violations are detected. The lyra files flag each
design rule violation with a bright splotch of paint on the error layer, and a caesar label iden-
tifying the type of violation. The lyra file for a cell "nameca contains the original caesar file
as a subcell, thus the caesar subedit command can be used to conveniently fix design rule vio-
lations reported by Lyra. Obsolete lyra files are removed by Lyra when a cell checks on the
current run.

Lyra's violation messages have the form:

1< LayersOrConstructs >_< Type >.

Note that all violation messages begin with an exclamation mark ('). LayersOrConstructs
gives the single character abbreviations for the layers involved in the violation. Circuit con-
structs such as transistors and buried contacts may also be indicated by short abbreviations
(eg. tr for transistor; Be for buried contact). Type is given by one or two characters indicating
the type of error as follows:

I = minimum spacing violation,
w = minimum width violation,
pe , parallel edge spacing violation,
x = insufficient extension or enclosure,
p = polarity, eg. Dif. doping doesn't match well in CMOS,
f - malformed circuit construct.

For example, a spacing violation between Polysilicon and Diffusion would look like this:

ID s.

Note that Parallel Edge checks are les restrictive than the corresponding Width and Spacing
checks would be, since they ignore diagonal interactions.

The following rulesets are currently supported at Berkeley.

UMSBERK
krkley aMOS rus. Modified Mead & Conway rules. Buried contacts are supported;
Butting Contacts are disallowed. The Lyon Implant rules are used.

cmes-pwJPL
CMOS ruls (p well). An extension of the Mead and Conway nMOS rules to CMOS,
worked out by Carlo Sequin in conjunction with JPL.

3rd Berkeley Distribution 10/24/82 1

,- . .. '. , , . . ., , .-. . - .4. .,.,.: '-.. ..-,....., .. . ., .- ,,- ., . ",---.- ., .-. -



LYRA(CAD) UNIX Programmer's Manual LYRA(CAD)

. , umisMC

Mud & Cmway aMOS rules as described in 'Introduction to VLSI Systems by Mead
and Conway. Butting Contacts are allowed; buried contacts are not allowed.

cmw-pw3
MOSIS 3 .1cmre bulk cmii process, (see below for details). This is the default ruleset
for technology cmoa-pw.

cmos-Mivi
MOSIS 3 micros bulk cmo process, (see below for details).

P. Isocukof
GTE 5 micro lcm process.

If the -r option is not given, Lyra chooses a ruleset based on the technology specified in the
rootCaesarFile. The correspondence between caesar technologies and default ralesets is
specified in "cadllibllyralDEFAULTS. If Lyra does not recognize the technology of the
rootCaesarFile, it uses the default radeset for nmo.

In editor mode standard input and standard output are used to communicate with the layout
editor, no log is written to stdout!, and violations are flagged directly in the edit cell. The
caesar technology or ruleset, if different from mes, must be specified expiicitly on the com-
mand line, since Lyra does not have direct access to the caesar database. Note that interactive
checks are nonhierarchical and slow, thus it is a good idea to use this mode only to check
small pieces of a design; complete designs are best checked in batch mode.

The options described below may be specified in a .cadre file or as command line options.
Lyra reads options from cadl/adrc, ".cadrc and the command line, in that order. If an
option is specified in more than one place, the later setting takes precedence. Capitalizing an
option on the command line, or giving the keyword uaaet< option> in cadre causes the

-. * option to be reset to its default value (e.g. "lyra -RW, resets any previous ruleset specification,
forcing the default to be used).

-e (edit mode) Used by Caesar and Lic. In this mode Lyra reads rectangles etc. from stan-
dard input and reports violations on standard output.

-o < outputDir>
(output directory) Gives directory for lyra (-Jy) files. Defaults to current directory.

-p < path>
(search path for caeur files) Path gives a colon (,.) separated sequence of directorys
to be searched in order for caesar files. The default search path is just the current
directory. As in caesar "cadlliblcaesar is searched as a last resort.

-r < rulesWt>
(deign rule set) Gives ruleset to use. Rulesets are stored in cadllib/lyra. A user can
supply his own ruleset by giving the full pathname on the -r option (see rulcc). If the
-r option is not specified, Lyra determines which ruleset to use from the technology
specified in the rootCaesarFile for the design.

-t < technology>
(caeom' technology) Used to specify caesar technology in editor mode, or to override the
technology given in the rootCaesarFile. Lyra uses the caesar technology to choose a
default ruleset.

-T (verbo. mode) Causes more detailed log information to be written to stdout. This
option is primarily for debugging.

-a (restart) If Lyra dies abnormally, it leavs a RESTART file in the output directory
which gives the cells which were completely checked. Lyra can then be restarted with
the -a option, to resume checking with the first (sub)cell not already checked. Note

3rd Berkeley Distribution 10/24/82 2



LYRA(CAD) UNIX Programmer's Manual LYRA(CAD)

that the restart option should only be used if the caesar database f or the project has
not been changed since the time the original Lyra run was started.

DIAGNOSTICS
CMOS-FW3 MOSIS 3 MICRON CMOS DESIGN RULES. V1.0

9C a' Contact-contact separation: 3u
oC we contact width: 3u
C2 r' netal2 extension around via: 23Su

metal extension around via: 2.5u
C2 e' via-via separation: 3u

"C2 w' via width: 3u
C/C2 e via-cut separation: 3u

RD e" active area-active area separation: 4u
ND w' active area width: 4u
"Dn4 we N+- active area width: 4u
RDp+ w P4- active am&a width: 4u

NDW WNT P4- active area (not gate) width: 3u
N+ active area (not gate) width: 3u

ND/C2 aN if active area is not under via, via-active area
separation: 3u

NDIC2 e if active area is under a via, active area extension
around via: 3u

ND/p+ e-a N4- active area to P4- spacing: 2u
NM a' metal-metal separation: 4u
NM wN metal width: 3u
NMP/pMM2~f z' step missing for metal2 step coverage
N!?m2e metal2-ntetal2 separation: Su

N4wN metal2 width: Su
N Nfl/P stNf metal2tmetal/poly width: Iu
NWWPq4M4 x' metal step width for metal2: 4u
NM/P/M2,f at' poly-metal separation when under metal2 with no

overlap: 5u
NT e poly-poly separation: 3u
NfPC 3e extra .5 micron in direction of metal in poly-metal

contacts
N1P w' poly (not gate) width: 3u

NPIC2 e if poly is not under via, via-poly separation: 3u
NPIC2 x" if poly is under a via, poly extension: 3u
7/1 N eD poly-active area separation: 2u

* NP/M/M2f stN poly-metal separation when under metal2 with no
overlap: Su

- . NP/P.4M2 x poly step width for metat2: 3u
" T w6 Gate area width: 3u
TI/c e contact to gate separation: 3u

NT/n+ e-a P4- extension around gate outside p-well: 3.5u
'T/p+ e gate inside p-well to P4- (of ohmic contact)

separation: 35Su
'VIA r via has obtuse corner
Nwp e" p-well to p-well separation: 9u
'Wp w" p-well width: 3u
"Wp/n +Wn e" N+4 active area (ohmic contact) to p-well

3rd Berkeley Distribution 10/24/82 3



Q 7 T W

LYRA(CAD) UNIX Programmer's Manual LYRA(CAD)

separation: 7u
"€ r' metal and (poly or active area) required under cuts

metal extension around cut: 2u
active area extension around cut: 2u
poly extension around cut: 2u

"pW/n+D x' p-well extension around active area: 4u
'pW/p+D e' separation of p-well from P+ active area: 8u
p+- p+ to p+ separation: 3u
p+/D x! P+ extension around P+ active area: 2u
"sc f* split ohmic contact must be 4 microns into P+ active

area and 4 microns into N+ active area
"tr f" malformed poly or active area abuttment: 3u extension
"tr p polarity: P+ implanted transistor in p-weU

polarity: N+ implanted transistor outside p-well

CMOS-PW3 MOSIS 3 MICRON CMOS DESIGN RULES, VI.1

Same as 1.0 with the following exceptions:

9modified rules:
"C2 r metal2 extension around via: 2u

metal extension around via: 2u
.M2/P st" metal2/metal/poly width: 3u
•M/PMM2 metal step width for metal2: 3u
"M/P/M2 st" poly-metal separation when under metal2 with no

overlap: 3u
.P/C2e if poly is not under via, via-poly separation: 4u
P/C2 in if poly is under a via, poly extension: 4u

'P/M/M2 st" poly-metal separation when under metal2 with no
overlap: 3u

"P/PMM2 X poly step width for metal2: 3u

new rule:
ND W" Active Area transistor abuttment width: 4u

FILES
cad/bin/lyra -- executable lyra.
cad/lib/lyra -- rulesets (in symbolic and executable form).
cad/lib/lyra/DEFAULTS -- gives default rulesets for caesar technologies.

SEE ALSO
Rulec (CAD)
Caesar (CAD)
KIC (CAD)
Cif2ca (CAD)
Cifplot (CAD)

AUTHOR

Michael Arnold.

3rd Berkeley Distribution 10/24/82 4

*. . . . . . . . . . . . .. . .



MEXNODES(1.VLSI) VLSI CAD Tools Manual MEXNODES( 1.VLSI)

NAME
mexnodes - integrate intermediate nodes extracted by mextra with the original caesar design.

SYNOPSIS
meznodu [optionu] basename

DESCRIPTION
Mexnodes is a shell script that uses cif2ca and caesar to generate a Caesar-format file. This file
allows the user to view the intermediate nodes named by mextra on the original design. Mex-
nodes can be helpful when a simulation tool reports errors at a node not named by the user, as
such errors are sometimes hard to locate. The output file created by mexnodes is named
mzbasename.ca. This file can be then viewed using caesar in order to find a given node.

The options are as follows:

-t technology
Technology is one of nmos, isocmos, or cmos-pw. Default is nmos.

-I lambda
Lambda specifies the centimicrons to lambda correspondence of the design. Default is
200 centimicrons per lambda.

FILES
basename.ca
mxbasename.ca
basename nodes
basename .cif

SEE ALSO
caesar(CADI), cif2ca(CAD1), mextra(CADI)

AUTHOR
Terry J. Ligocki

BUGS

UW/NW VLSI Release 2 1 6/1184

a.-* .................................. ~



I-

MEXTRA(CADI) UNIX Programmer's Manual MEXTRA(CADI)

NAME
mextra - Manhattan circuit extractor for VLSI simulation

SYNOPSIS
matm [-g] [-a scale] basename

DESCRIPTION
Mextra will read the file basename.ef and create a circuit description. From this circuit
description various electrical checks can be done on your circuit. The circuit description is
directly compatible with esim, powest, and erc. There are translation programs to convert mex-
tra output to acceptable spice input (see sim2splce, pspice and spcpp).

Mextra creates four new files, basenanieJog, basenane.I, basename.sim and basename.odes.
After mextra finishes it is a good idea to read the Jog file. This contains general information
about the extraction. It has a count of the number of transistors and the number of nodes,
and it contains messages about possible errors. The .id file is a list of aliases which can be used
by esim. The .nodes file is a list of node names and their CIF locations listed in CIF format. It
can be read by cifplot to make a plot showing the circuit with the named nodes superimposed.
The form of this cifplot command is:

cifplo basenamenoduu basename.df

The .im file is the circuit description for use with simulation programs and electrical rule
checkers. The format of the .ide file is described in the man page simile(S).

Nam

Mextra uses the CIF label construct to implement node names and attributes. The form of the
CIF label command is as follows:

94 name x y [layer];
This command attaches the label to the mask geometry on the specified layer crossing the
point (z, y). If no layer is present then any geometry crossing the point is given the label.

Mextra interprets these labels as node names. These names are used to describe the extracted
circuit. When no name is given to a node, a number is assigned to the node. A label may
contain any ASCII character except space, tab, newline, double quote, comma, semi-colon,
and parenthesis. To avoid conflict with extractor generated names, names should not be
numbers or end in 'On' where n is a number.

A problem arises when two nodes are given the same name although they are not connected
electrically. Sometimes we want these nodes to have the same names, other times we don't.
This frequently happens when a name is specified in a cell which is repeated many times. For
instance, if we define a shift register cell with the input marked 'SR.in' then when we create
an 8 bit shift register we could have 8 nodes names 'SR.in'. If this happens it would appear as
though all 8 of the shift register cells were shorted together. To resolve this the extractor
recognizes three different types of names: local, global, and unspecified. Any time a local
name appears on more than one node it is appended with a unique suffix of the form 'On'
where n is a number. The numbers are assigned in scanline order and starting at 0. In the
shift register example, the names would be 'SR.in#0' through 'SR n#7'. Global names do not
have suffixes appended to them. Thus unconnected nodes with global names will appear con-
nected after extraction. (The -Z causes the extractor to append unique suffixes to uncon-
nected nodes with the same global name.) Names are made local by ending them with a sharp

sign, '0'. Names are global if they end with an exclamation mark, ''. These terminating char-
acters are not considered part of the name, however. Names which do not end with these
characters are considered unspecified. Unspecified names are treated similar to locals. Multi-
pie occurrences are appended with unique suffixes. By convention, unspecified names signify

" the designer's intention that this name is a local name, but is connected to only one node. It

4 ks"4th Berkeley Distribution 6/1/841



MEXTRA (CAD1) UNIX Programmer's Manual MEXTRA (CADl )

is illegal to have a name that is declared two different types. The extractor will complain if
this is so and make the name local.

It makes no difference to the extractor if the same name is attached to the same node several
times. However, if more than one name is given to a node then the extractor must choose
which name it will use. Whenever two names are given to the same node the extractor will
assign the name with the highest type priority, global being the highest, unspecified next, local
lowest. If the names are the same type then the extractor takes the shortest name. At the
end of the .log file the extractor lists nodes with more than one name attached. These lines
start with an equal sign and are readable by esim so that it will understand these aliases.

Attributes

In addition to naming nodes mextra allows you to attach attributes to nodes. There are two
types of attributes, node attributes, and transistor attributes. A node attribute is attached to a
node using the CIF 94 construct, in the same way that a node name is attached. The node
attribute must end in an at-sign, '@'. More than one attribute may be attached to a node.
Mextra does not interpret these attributes other than to eliminate duplicates. For each attri-
bute attached to a node there appears a line in the .abm file in the following form:

A node attribute

Node is the node name, and attribute is the attribute attached to that node with the at-sign
removed.

Transistor attributes can be attached to the gate, source, or drain of a transistor. Transistor
attributes must end in a dollar sign, '$'. To attach an attribute to a transistor gate the label
must be placed inside the transistor gate region. To attach an attribute to a source or drain of
a transistor the label must be placed on the source or drain edge of a transistor. Transistor
attributes are recorded in the transistor record in the jm file.

Trmisdtorv

For each transistor found by the exractor a line is added to the .it file. The form of the line
is:

type gate source drain length width x y
g=attributes s=attributes d=attributes

Type can be one of three characters, 'e' for enhancement, 'd' for depletion, or 'a' for unusual
implant. ( Unusual implant refers to transistors which are only partially in an implanted area.
It will be necessary to write a filter to replace these transistors with the appropriate model in
terms of enhacement and depletion transistors.) Gate, source, and drain are the gate, source,
and drain nodes of the transistors. Length and width are the channel length and width in CIF
units. X and y are the x and y coordinates of the bottom left corner of the transistor. Attri-
butes is a comma seperated list of attributes. If no attribute is present for the gate, source, or
drain, the g=, @=, or d= fields may be omitted.

The extractor guesses the length and width of a transistor by knowing the area, perimeter,
and length of diffusion terminals. For rectangular transistors and butting transistors the
reported length and width is accurate. For transistors with corners or for unusually shaped
transistors the length and width is not as accurate.
It is possible to design a transistor with three or more diffusion terminals. The extractor con-

siders these asfmy transistors. They are entered in the jim file in the form:

ftype gate node) node2 ... odeN xioc

4th Berkeley Distribution 6/1/84 2

,............................................. ..................... ............ .-..-...-. 



MEXTRA(CADl) UNIX Programmer's Manual MEXTRA(CAD1)

The 'r is followed by the type : 'e', ' or 'a'. Node) ... nodeN are the diffusion terminal nodes.
As with any circuit with 'a' transistors, any circuit with 'r transistors must be run through a
filter replacing each of the funny transistors with the appropriate model in terms of enhance-
ment and depletion transistors.

Capacitance

The Aim file also has information about capacitance in the circuit. The lines containing capa-
citance information are of the form:

C nodel node2 cap-value
cap.value is the capacitance betweens a node and substrate is in femto-farads. Capacitance
values below a certain threshold are not reported. The default threshold is 50 femto-farads.

Transistor capacitances are not included since most of the tools that work on the .sm file cal-
culate them from the width and length information.

The capacitance for each layer is calculated separately. The reported node capacitance is the
total of the layer capacitances of the node. The layer capacitance is calculated by taking the
area of a node on that layer and multiplying it by a constant. This is added to the product of
the perimeter and a constant. The default constants are given below. Area constants are in
femto-farads per square micron. Perimeter constants are femto-farads per micron.

Layer Area Perimeter
metal 0.03 0.0
metal2 0.015 0.0
poly 0.05 0.0
diff(n) 0.10 0.1
diff(p) 0.10 0.1

I poly/diff 0.40 0.0

Poly/diffusion capacitance is calculated similar to layer capacitance. The area is multiplied by
constant and this is added to the perimeter multiplied by a constant. Poly/diffusion capaci-
tance is not threshold, however.

%'- The -e option supresses the calculation of capacitance, and instead, gives for each node in the
circuit the area and perimeter of that node on the diffusion, poly, and metal layers. The lines

*containing this information look like this:

L node metal2Area metal2Perim metalArea metalPerim polyArea polyPerim diffArea diffPerim
"" diff pArea diff pPerim

Node is the node name. z y is the position of a point on the node. Currently this is always
0'. metal2Area through diffpPerim are the area and perimeter of the metal2, metal, poly,
diffusion(n), and diffusion(p) layers in user defined units. (In addition the - option causes
transistors with only one terminal to be recorded in the .in file as a transistor with source
connected to drain.)

If the network is being extracted from the if file we suggest the node capacitance nos be cas
puted by mextra. Rather the-e option should be used. This puts the burden of computing node
capitance on the programs presim and sim2spice2. We feel this is advantageous because
presim and sim2spice2 are filter programs linked directly to the type of simulation that is to be
done. This will hopefully reduce some of the confusion associated with calibration.

Changing Default Values
As part of its start up procedure mextra reads two files: /usr/vlsibin/.cadrc and then a search
for the first .cadre from the current directory (.) to the the user's home directory is made.
Mextra reads these files to set up constants to be changed without recompiling. The keywords
for mextra are contained within the mextra environment of the .cadrc file. Declaration of

4th Berkeley Distribution 6/1/84

ZtA.A s. % % &



MEXTRA(CADI) UNIX Programmer's Manual MEXTRA(CADI)

environments in the .cadre file are described in .cadrc(S).

By default, mextra reports locations in CIF coordinates. A more convenient form of units may
be specified either in the .cadre file or on the command line. The form of the line in the
cadre file is:

units scale

where scale is in centi-microns. The user may type in the chosen value for the scale directly.

To set units on the command line use the -- option.

mextra -a scale basename

The parameters used to compute node capacitance may be changed by including the following
commands in your .cadre file.

areatocap layer value
pertmetertocap layer value

value is atto-farads per square micron for area, and atto-farads per micron for perimeter.
layer may be 'poly', "diff", "metal, "metal2", or "poly/diff'.

To set the capacitor values to those given in Mead and Conway the following lines would
appear in the cadre file:

areatocap poly 40
areatocap diff 100
areatocap metal 30
areatocap poly/diff 400
perimetertocap poly 0
perimetertocap diff 0 -

perimetertocap diff 0
perimetertocap metal 0
perimetertocap poly/diff 0

The threshold for reporting capacitance may be set in the cadre file with the following line.

capthreshold value

A negative value sets the threshold to infinity.
Mextra knows of two technologies, nMOS and cMOS p-well. NMOS is assumed by default.

To set the technology to cMOS p-well, include the following line in your .cadre file:

tech cma-pw

FILES
-/.cadrc
basexame.cif
basename.al
basename.log
basenane.nodes
basenamensm

SEE ALSO
powest(l.vlsi), pspice(l.vlsi), spcpp(1.vlsi), sim2spice(t.vlsi), spice(1.vtsi), drc(t.vlsi), erc(1.vlsi)
caesar(cad 1),
cadrc(cadS), simfile(l.vlsi).

AUTHOR

Dan Fitzpatrick (UCB)

4th Berkeley Distribution 61184 4

-*-: ,.'. "-:' ." . -... ." -, ' " . - " - .



MEXTRA(CAD1) UNIX Programmer's Manual MEXTRA(CADI)

MODIFICATIONS
(UW/NW VLSI Consortium, University of Washington)

BUGS
Accepts manhattan simple CIF only, use clfplot -0 to convert complicated CIF. For unusu-
ally shaped transistors the UW/NW modified meara should be used, otherwise values will be
quite inaccurate. The modified meara will either yield accurate values or a "reasonable' guess,
depending on the complexity of the unusual transistor. The modified mextra will tell you
when the output values are only best estimates. The length/width ratio for unusually shaped
transistors may be inaccurate. This is true for snake transistors. Attributes for funny transis-
tors are not recorded. Node attributes are ignored unless the -o switch is present.

4

54th Berkeley Distribution 6/1/845

*.* *......-



MTP(1.VLSI) VLSI CAD Tools Manual MTP( l.VLSI)

NAME
mtp - Multiple Time-series Plot for simulator output

SYNOPSIS
map behavior-file directive-file plot-file

DESCRIIPTION
Mtp plots the output of ri and spice simulations on the Printronix line printer. Behavior-file

is the rni or spice output file, directive-file is a 'specification file" for the plot, and plot-file is
an output file to contain the plot suitable for printing on the Printronix line printer.

The use of rap involves the following steps:

1. Generate a behavior file.

If you are using ril, the directive

openplot 'behavior-file'

will cause the changes to all traced nodes to be written to behavior-file in addition to
being written to the terminal. Quotes are necessary if the file name has any punctua-
tion in it.
The RNL directive

closeplot

will terminate the behavior file. If the entire ri session is to be recorded closeplot is

not required, as the file will be terminated when rni exits.

If you are using spice, a behavior file may be specified as the third positional parame-
ter of the spice command. Behavior records will be put on this file for all nodes
specified on the Spice PLOT directive.

2. Generate a plot file from the behavior file using mtp.

The plot is sent to the Printronix printer using the Unix command
lpr -1 plot-file

The contents of behavior-file are interpreted with the help of directive-file. For the basic pur-
pose of plotting tb e output of ri or spice, only a few directives need be supplied:

1. start time
Tells mtp when to start plotting. If not supplied time defaults to 0. Data is skipped on
the behavior file until an event is found whose time is greater than or equal to the
start time.

2. stop time
Tells mtp when to stop plotting. A stop value must be specified. If the stop time is
greater than the time of the last event on the behavior file, the plot will be concluded
with the last event.

3. scale time
Tells ntp the number of time units per inch. The default value is 1000.0. Because the
time unit used by rai for behavior file output is 1.0 nanosecond, this value will pro-
duce plots of rni output having a scale of 1.0 microsecond per inch.

4. logical signal
This is used primarily for plotting rrd output. To select signals A, B and C for plot-
ting in logical format the directives would be

logical A .
logical B
logical C

* UW/NW VLSI Release 2 1 4/30/84

" . p p p ,'p .. .



MTP(1.VLSI) VLSI CAD Tools Manual MTP( i.VLSI)

5. anlo signal heirht
Analog format is required when dealing with spice output because spice produces L

floating point values rather than logic levels. The height in inches of each trace must
be specified. To select node voltages for nodes 1, 2 and 3 for plotting in analog format
the necesary directives might be

analog V(1) 0.5
analog V(2) 0.5
analog V(3) 0.5

The order of selection directives in the file determines the order of the traces on the plot.
The first signal selected is plotted closest to the time axis. A maximum of 20 signals may be
selected on a given plot.

Spaces are used to separate the fields of a directive line. Blank lines or lines starting with #
are ignored. Directives are case insensitive except for signal names.

EXAMPLE
The following example uses mtp to plot the behavior of a 10 bit counter, cntrl0.net, shown
here in netlist format:

net file for 10-bit counter

half adder made from gates
(macro half adder (a b s c)

(local hl h2 h3)
(nand (hi 2 16) a b)
(nand (h2 2 16) a hl)
(nand (h3 2 16) b hi)
(nand (s 2 16) h2 h3)
(invert c hi)

)

one cell of a counter
(macro cell (in out Cin Cout)

(local cl c2 c3)
(invcrt ci in)

(trans phil cl c2)
(invert c3 c2)
(half adder c3 Cin out Cout)
(trans phi2 out in)

declare global node names
(node count c in out phil phi2)

; carry-in to first significant bit controls counting action
(connect count c.0)

generate the counter
(repeat i 1 10

(capacitance out.i 1.234)
U (cell in.i out.i c.(1- i) ci)

UW/NW VLSI Release 2 2 4/30/84

... . . 1

.. . . . . . . . . . .. . . . . . . . . . . . . . . . .



MTP( 1.VLSI) VLSI CAD Tools Manual MTP( 1.VLSI)

The ml control file, cntrl0.1, is as follows:

RNL initialization file for 10 bit ripple-carry counter

(load "uwstd I")
(load "uwsimY*)

(read-network 'cntrlO*)

(setq report-form nil) This turns off the report generator

(setq incr 1000)

bind symbols to node names

(chfiag '(phil phi2 out.10 out.9 out.8 out.? out.6
out.5 out.4 out.3 out.2 out.1))

(defun init (dummy)

(I '(count in.1 in.2 in.3 in.4 in.5
in.6 in.? in.8 in.9 in.10))

(I '(phi2))
(h '(phil))

(step incr)
(I '(phil))
(step incr)

(x '(in.1 in.2 in.3 in.4 in.5
in.6 in.? in.8 in.9 in.10))

(h '(phi2))
(step incr)

QI '(phi2))
(step incr)

(h '(count))

(wr-report)

* 'done

(defvec '(bit bout out.l0 out.9 out.8 out.? out.6
out.5 outA out.3 out.2 out.l))

49 (defvec '(dec dout out.l0 out.9 out.8 out.? out.6
out.5 out.4 out.3 out.2 out.l))

UW/NW VLSI Release 2 3 4/30/84



A:. -~UW - .

AMTP( l.VLSJ) VLSI CAD Tools Manual MTP( 1.VLSI)

(def-report '("10 bit counter current state" newline
count (vec bout) (vec dout)))

Generate the behavior for the counter using ri

netlist cntrl0.net cntrIOsim
presim cntrIOsim cntrI0
rml cntrl0.l

init # initialize the counter

*openplot 'cntrl0.evl* 0 open the behavior file

iP (.evl stands for event list)

c 30 0 run 30 clocks

exit # eit nI

Generate the plot.

mtp cntrl0.tvl cntrI0.mtp cntrl0.plt

Iwo lpr cntrlO.plt

The file cntrlOriup could contain the following:

start 0.0
stop 20000.0
scale 1000D
logical phil
logical phi2
logical out.1 C
logical out.2
logical out.3
logical out.S
logical out.4

The start and wcale directives are not necessary but are included for the purpose of illustra-
tion. Although not required, these directives typically preceed the signal selection directives
in the file.

When mtp runs it lists the contents of the directive file on the terminal and reports progress
with the following messages:

Previous output cntrl0.plt removed
Select and preprocess input data
Sort preprocessed events
Generate the plot
Rasterize for the Printronix
imp complete, plot file is cntrl0.plt

qUWINW VLSI Release 2 4 4/30/84



MTP( I.VLSI) VLSI CAD Tools Manual MTP(I1.LSI)

The ORasterize for the Printronixe message marks the beginning of the longest step in the pro-I
ceus which typically takes about a minute under moderate system loads.

Mtp creates scratch files named fort.]. I ort2. fort3, fort.4, and fort.7. If any of these files are
present when nup is invoked it will eirit with an error message. This can happen if mtp is
aborted before having time to clean up the scratch files. If this happens the scratch files can
be cleaned up with the Unix command

rm fort.[123471

SE ALSO
rnl(1.vlsi) spice(l.vlsi),

User's Guide to RNL VLSI Design Toobs Reference Manual, UWINW VLSI Consortium,
University of Washington, (Christopher Terman, MIT Laboratory for Computer Science).

SPICE User's Guide, VLSI Design Tool. Reference Manal, UW/NW VLSI Consortium,
University of Washington, (A. Vladimirescu et at., 15 Oct. 1980)

AUTHOR
William Beckett (UW)

I.0

uUWINW VLSI Release 2 5 4/30/84



MULT (I.VLSI) VLSI CAD Tools Manual MULT ( I.VLSI)

" ' """NAM
Amult -generate a cmos multiplier layout (version 10).

SYNOP8S
wait [option)l caesarnamw

DESCRIPTION
Mult is a module generation program for static cmos multiplier circuits. The layout is pro-
duced in "caesar format. Mut requires a number of caesar cells with names of the form
multe ca to exist in directory Ica. These should be copied from
$UWVLSITOOLS/lib/generators/mult prior to running mult. The generated layout is output
in directory 1ca in caesar cells with names of the form "caesarame*oca. Mut is a cft-based
program and therefore also produces *.bd files. "Caesarname" may not begin with the string
mullt.

The options are as follows:

-s Makes the left side horizontal bus ground. This is the default.

-m mbiss
Sets the number of bits in the multiplicand operand. Mbit must be in the range 3 to
32. The default is 3.

-a nbits
Sets the number of bits in the multiplier operand. Nbitsa must be in the range 3 to 32.
The default is 3.

-p P_string
labels the propduct output bits with labels P stringO', ?Pstringl', T-string2", etc.
with P stringOr attached to the lsb. These labels appear on the right side and the bot-
tom side of the layout. The default is p'.

-s Makes the number representation signed (two's complement). This is the default.

-0 Makes the number representation unsigned.

-v Makes the left side horizontal bus Vdd.

-x X-string
labels the multiplicand input bits with labels "X stringO', "X_stringl', 'X stringr, etc.
with 'X stringO" attached to the lsb. These labels appear on the top side of the layout.
The default is W1 *

-y Ystring
labels the multiplier input bits with labels 'Y_stringO', "Y stringl', "Ystring2', etc.
with 'Y -string0 attached to the sb. These labels appear on the left side of the lay-
out. The default is y'.

FILES
Jcalcausarnamee.ca
Jca/caesarname*.bd
J/ca/muh*.ca

SEE ALSO
caesar(CAD1), cff(5.vlsi)

AUTHORS

Wayne E. Winder

UW/NW VLSI Release 2 1 6/1/84

r'. ,.,., ,.- ..- ..- ,,. .- - ..,., ,-. -. . - - - -' -.- . -,, ,,- ', ' ..: -, ., , *" ,." " , " . , -' - " - " "



NETLIST (1.VLSI) VLSI CAD Tools Manual NETLIST ( I VLSI)

NAM,
netlisn - a simple network description language for VLSI circuits

SYNOPSIS
netflst infl/e [outfite [-.1 [-.Uechl [-uurisJ [-s nI [-d n ) [-e ndm [- ni [-1 no [-p n mJ

DESCRIPTION
Netiist requires an input file with any/all extensions on the command line. An optional output
file can be specified. Additional options are described below;

-o Uses old input format. Size specifications are taken to be length/width rather than
width/length.

-ttech Uses tech in the technology portion of the units/tech line at the beginning of the
simulation file produced (Default is nmos).

-units Sets the number of centi-microns per lambda to units (Default is 250). Warning:
The 'unite set by this option appear in the comment line of the sim file. This
value is not used by PRESIM and does not influence an RNL simulation.

-an Uses number n as initializer for internal node names; useful when you want to
merge the results of separate netlis: runs.

-d n, n Sets the default width to n and length to m for depletion devices. The defaults are
n=8 and m=2.

-en, n Similar to -d except for enhancement devices. The defaults are n=2 and m=2.

-in, n Similar to -d except for intrinsic devices. The defaults are n=2 and ms=2.

-in, n Similar to -d except for low-power devices. The defaults are n=2 and m=2.

-p n, n Similar to -d except for p-channel devices. The defaults are n=2 and m=2.

In addition, if node alias records (= nodel node2 ...) are declared using "connect' (See net/ist
reference documents) they appear in a file with the name "basename.al'. The basename is the
input file name minus its last extension.

Neg/ist is a macro-based language for describing networks of sized transistors. Names in netlis:
refer to nodes, which presumably get interconnected by the user through transistors. Macros
for describing transistors can be found in the NETLIST User's Guide. In addition to transistor
macros netlist provides macros that allow the user to set node capacitance, specific node delays
(in tenths of nanoseconds), and transistor threshold voltages. The user may also define his
own macros.

The load command uses the environment variable RNLPATH (default
.:$UWVLSITOOLSIiiblrnl). See the NETLIST User's Guide for details.

SEE ALSO
presim(1.vlsi), rn/(l.vlsi),

NETLIST User's Guide, VLSI Design Tools Reference Manual, UW/NW VLSI Consortium,
University of Washington,

3 ,AUTHOR
Christopher Terman (MIT)

UWINW VLSI Release 2 1 4130/84

, .Z 7



PADS(I.VLSI) VLSI CAD Tools Manual PADS( I.VLSI)

NAME
pads - generate a cmos padframe layout (version 1.0)

SYNOPSIS
pads caesarnmwe < framwepec

DESCRIPTION
pads is a module generation program for a MOSIS 3 micron cmos padframe layout. This gen-
erator uses leaf cells derived from the MIT pads received from MOSIS. The leaf cells and the
layout that is produced are in "caesar format. Pads looks for caesar leaf cells with names of
the form pads.ca in the directory Jca. These should be copied from
$UWVLSITOOLS/lib/gencrators/pads prior to running pads. Pads also reads in a frame-spec
file from the home directory (not ./ca). The framespec file definition is provided in the text
that follows. The generated layout cells (composition cells) appear in directory ./ca with
names caesarnameo.ca. Pads is a cS-based program and therefore also produces *.bd files.
'Caesarname" may not begin with the string "pad.

There are no options.

FRAME-SPEC
The frame specification is a text file made up of one frame specifier followed by several pad
specifiers. These records are terminated with ';' and may cross line boundaries. Individual
fields within records should not cross line boundaries. The syntax is 'c-like'; comments may be
placed anywhere with the I* ... */ convention.

The frame specifier is made up of a type specifier followed by an optional connection layer
specifier. The type specifier is one of C28_46x34, C40 46x68, C40_69x68, C64_69x68,
C64_79x92, or C84_79x92 (the first number indicates the number of pins on the frame, the
second and third numbers give the x and y dimensicos of the entire frame in hundreds of

quo. microns). The connection layer specifier indicates what material connects the individual pad
circuitry to the interior of the chip (across the quard ring). This specifier may be METAL2
or POLY. Default is POLY.

The pad specifiers are used to determine the type of circuitry to place on specific pad sites.
Pad specifiers are made up of pin number, pad type, and optional label and connection
specifiers.

The pin number is an integer between 1 and the number of pins for the frame specified (see
above). For the 28 pin frame, pin number 1 is in the middle of the right side of the frame.
For the 40 and 64 pin frames, pin number I is immediately above the middle of the right side
of the frame. For the 84 pin frame, pin number 1 is the rightmost pin on the top of the
frame. Pin numbering procedes counterclockwise in all cases.

The pad type is one of padlvdd (power), padlgnd (ground), padlin (input), padlout (output),
padIttl (ttl output), padlts (tri state output), padibin (buffered input), padibit (buffered ttl
input) or padlsp (frame spacer - never required).

The optional label specifiers are of the form 'BP = label', 'LI = label', 'L2 = label' and 'L3 =
label'. BP, Li, L2 and L3 indicate where on the pad circuitry to place the label; on the bond-
ing pad, on the leftmost connection on the bottom of the pad circuitry (when viewed with
bonding pad on top), second from left and third from left, respectively. 'Label' is any string
beginning with a letter and containing only non-special characters. Special characters include

'and '/'. Special characters can be included in strings by placing double quotes around
the string and preceding the special character with the backslash character. For details of
what connection connects to what portion of the pad circuitry, view the appropriate circuit
from padloca using caesar. The connections should be annotated with local labels to avoid

: -." ambiguity. Not all connections appear on all pads.

UW/NW VLSI Release 2 1 4/16/85

-. "-



PADS( 1.VLSI) VLSI CAD Tools Manual PADS(I.VLSI)

The optional connection specifier indicates which connection to the interior is to receive a
contact, after crossing the guard ring. This specifier is of the form 'CN = layer', where N is 1,
2 or 3 and is identificd as above. 'Layer' is one of METAL, POLY, or METAL2. Default is
METAL. If the layer is the same as the input connection material (specified in the first record),
no contact is placed. If different, a contact is placed. POLY may not be routed to METAL2
and vice-versa.

RESTRICTIONS
Pins may not be assigned more than once. Only those pins required need be assigned.

In ceratin corners of certain frames, tristate pad connections do not cross the quard ring.

In the 28, 40, and 64 pin frames, pin I should be vdd or blank. In the 84 pin frame, pin 10
. should be vdd or blank.

Each frame must include at least one VDD pad and one Ground pad. These pads may only
connect to the interior with METAL.

FILES
"ca/caesarname*.a
Jca/caesarnamos.bd
Jca/pad*.ca
SUWVLSITOOLS/srclexamplcs/pads/input

(for a frame spec example)

SEE ALSO
- .+ cfl(5.vlsi)

AUTHORS
Wayne E. Winder

UW/NW VLSI Release 2 2 4/16/85

* o L5 Z 2 .>* ..



PEG (CADI) UNIX Programmer's Manual PEG (CADI)

NAME
peg - finite state machine compiler

SYNOPSIS
peg [ - [-t1 [nfle ]

DESCRIPTION
Peg (PLA Equation Generator) is a finite state machine compiler. It translates a high level
language description of a finite state machine into the logic equations needed to implement
the state machine design. Peg uses the Moore model for finite state machines, in which out-
puts are strictly a function of the current state. Input is read from the named file or from

- sdin if no file is specified.

A set of equations is generated on standard output. The equations are in the eqn format used
by eqnott. Output from peg may be piped directly to mkpla or tpla thus:

peg inrile I eqntott I mkpla -i -o -y n -foutfile
peg irnfile I eqntott I tpla -c -s Bcis -I -O -o outfile

Either of these command lines generates a PLA implementation of the finite state machine in
the file outfilecif. In the above command line for mkpla, n must be replaced by the integer
number of state bits generated for the fsm by peg.

The PLA will have clocked, dynamic latches on all inputs and outputs. From left to right, the
PLA inputs and outputs are the fsm inputs, fsm state inputs, fsm state outputs, and fsm out-
puts. The mkpla result will feed back n state bits from the PLA outputs to the PLA inputs;
however, if tpla is used then the feedback lines must be manually added to the resulting cir-
cuit.

Peg options have the following meanings.

-t Generate a truth table for the fsm in the file peg ,ummary.

-6 Print summary information in the file pegasummary.

PROGRAM STRUCTURE
A peg program is composed of a list of input signal names, a list of output signal names, and a
list of state descriptions, in that order. The input and output lists are optional.

Inputs
.-. .. An input signal list consists of the keyword INPUTS and a list of fsm input signal names, ter-

minated with a semicolon. Every input list must have at least one input. If the fsm has no
. inputs, this statement is omitted. PLA inputs will have the left-to-right ordering specified in

the INPUTS list.

Outputs
A list of output signal names begins with the keyword OUTPUTS and is terminated with a
semicolon. PLA outputs will have the ordering specified in the OUTPUTS list.

State List
The remainder of a peg program consists of a list of state definitions. A state definition has

S.-- the form

[state-name : [ASSERT signal-list ; ] [control ; ]

There is at most one ASSERT statement per state definition. Asserted output signals are set
to 1. Signals that are not asserted have value 0.

There is at most one control statement per state definition. Control may be one of

IF (NOT I input THEN state-name [ ELSE state-name ]

3rd Berkeley Distribution 10/18/82 1

• .... ... .. - . . .,:. .-. ...........-. * -, - ..... .-_.., ,*._, : . .. %:- ':': , t - ..., ,.t.,.,, - 4.-, . _ ,-., ...



PEG (CAD1) UNIX Programmer's Manual PEG(CADI)

.-

GOTO state-name
CASE (inpat-signal-list) selectors ENDCASE [defaid:]

Each case selector specifies the next-state for a particular set of values of the CASE input sig-
nals. Case selectors are lines of the form

S0 111 ?)+ => state-name

If no control is specified- by omitting the ELSE clause from an IF, by specifying a CASE with
no default, or by omitting control information entirely- next state defaults to the next sequen-
tial state on the state list. The default next state is undefined for the last state in the pro-
gram. The special state name LOOP specifies that the next state is the same as the current
state.

Comments
Comments may appear at any location in a peg program. They begin with a double dash, .- ',
and terminate at the end of the line on which they appear.

Rent Logic
There are two ways of handling fsm initialization. If the keyword RESET appears as one of
the input signals, then the fsm will jump to the first state on the state list when the signal
RESET is asserted high. Alternatively, the user may force a jump to the first state on the state
list by adding logic to the PLA state outputs to pull all of the state output lines low when a
reset is desired.

Example
The following peg program illustrates a variety of features:

--Decode inputs a, b, and c into
--0, 1, 2, 3, or "other'.

INPUTS: RESET Select a b c;

OUTPUTS:
FoundO Foundl Found2 Found3 FoundOther;

Start: --This is the reset state
IF NOT Select THEN LOOP;

CASE (a b c) -Second state
0 0 0 => Zero;
0 0 1 => One;
0 10 => Two;
011=> Three;

ENDCASE = > Other;

Zero: ASSERT Found0; GOTO Start;

One: ASSERT Foundl; GOTO Start;

Two: ASSERT Found2; GOTO Start;

Three: ASSERT Found3; GOTO Start;

Other: ASSERT FoundOther; GOTO Start;

SKI ALSO
mkpla(CADI), tpla(CAD)), eqntott(CADI)
Gordon Hamachi, Designing Finite State Machines with Peg

3rd Berkeley Distribution 10/18/82 2

U~



PEG (CADI) UNIX Programmer's Manual PEG (CADI)

FILES
peg.summary summary information file

AUTHOR

Gordon Hamachi

BUGS
The parser quits after the first error is found.

,..0

,,

!J

oN-

.4°

e!3rd Berkeley Distribution 1018/82 3

I]

• "" "-" "..,.."-..-.-d.'-. -'-. ,-. " "- -", ,'-. .-.-. --".". -' ." . . . . .'-.. ".' ' ' . .. . ",-•". . .," - '': "'



PLA2NET( I.VLSI) VLSI CAD Tools Manual PLA2NET( l.VLSI)

NAME
pla2net - generate netlist macro from truth table of pia

SYNOPSIS
pla2net basename

DESCRIPTION
pla2net generates a netlist macro using the truth table definition for a pla as an input. This
truth table may have been obtained using PEG and EQNTOTT. pla2net expects that a file
named 'bsname.tt' is in the current directory; if this is not the case an error message will be
generated. The output of pla2net will be stored in a file named "basenamenel'.

The macro defined in the 'basename.aet' file looks as follows:

(macro basename (output input) where:

the basename is identical to the basename in the commmand line of pla2net;

output is an outputvector, numbered from left-to-right as in the truth table and a lay-
out generated with tpla starting with output.1;

'.-input is an inputvector, number from left-to-right as in the truth table and a lay-out
generated with tpla starting with input.l.

Note: When designing pla's for sequential state machines with PEG, the innermost inputs
and outputs of the pla will be the least significant bit. The state register inputs and
outputs must be wired accordingly (miror and shift numbering of input vector in the
netlist description for the top level sequential state machine, which includes the
feedback register, is necessary).

- INPUT FILE-": bmmam..n

OUTPUT FILE
T ' bm ~a.,,et

SEE ALSO
Manual entries for PEC. EQNTOTT

AUTHOR
Henrtecus Koeman. John Fluke Mfg. Co., Inc.

BUGS
The current version only supports cmos technologies. The source code can easily be
modified for other technologies.

3UW/NW VLSI Release 3 1 611/85

'2 ----------------- -.--... *-



PRESIM( 1.VLSI) VLSI CAD Tools Manual PRESIM( I.VLSI)

NAME
presim - a netlist preprocessor for the rni VLSI circuit simulator

SYNOPSIS
predm infile outfile [configfile I-) [-cfileminj [-4fileminJ [presistvoltagel

DESCRIPTION

Presim converts the .lm file into a binary file to be used by rl.

The parameters and options are as follows:

infile A net list file that must include any/all extensions;

oufile An output filename must be specified on the command line;

configfile (optional) A file to set lambda and RC parameters for nodes and transistors in
the netlist (see the presim user's guide for descriptions of the parameters and syn-
tax).

-g Suppresses the sum-of-products formation. This may be desired if you think
sum-of-products is formed wrong otherwise the advantages of the transistor and
node reduction make this option unattractive.

-efile, nun Writes a list of node names and capacitances to the specified file. Only capaci-
tances larger than min will be included.

-tflle, main Writes a list of transistors and RC values to the specified file -- there are two
entries for each transistor. The R's come from the size of the transistor, C's
from the source/drain capacitance. Only RC values larger than nin will be
included.

-prest, voltage
Provides a worse-case estimate of the circuit power consumption by assuming
that all the pullups (DEP or LOWP devices with drain=Vdd) are all on simul-
taneously. Voltage specifies the supply voltage,

Presim also attempts to open the file basenam.al, where basename is defined as the input file
name minus its last extension. It is non-fatal for this file to be absent.

SEE ALSO
PRESIM User's Guide, VLSI Design Tools Reference Mhaal, UW/NW VLSI Consortium,
University of Washington, (Christopher Terman, MIT Laboratory for Computer Science).

AUTHOR
Christopher Terman (MIT)

BUGS
Propagation of X state information for cmos circuits in rn is unreliable if the gate reduction
in presim is performed. If this information is required, suppress gate reduction with the -g
option in presim.

I P

UW/NW VLSI Release 2 DRAFT

.. . . . . . . .- .. - - - . . .- --.. - - . . - - , . ' ' - - ,. . - , . . . - - - '



PRESTO (1.VLSI) VLSI CAD Tools Manual PRESTO ( 1.VLSI)

NAM
presto - combinational logic minimization program

SYNOPSIS
presto

DESCRIPTION
Presto is an efficient combinational logic minimization program. This program not only
reduces the number of product terms, increases the number of don't care inputs, but also
reduces the number of the output connections. Therefore, this program is very useful to pla
designers.
Input is taken from standard input. Output goes to standard output.
An example of typical input is as follows:
.i4
.o2

.p 4
lOux 11
000x lx
1111 01

0 0101 10
.e

The integer after .i is the number of input variables. The integer after .o is the number of
output variables. The integer after '.p' is the number of input product terms. ".!Y is optional
for input listing. There is another option *.d" for intermediate results.
In the input part, 1 means logic level 1, 0 means logic level 0, x(or -) means don't care. In the
output part, 1 means that the term is connected to the output, 0 means that this term is not
connected to the output, and x(or -) means that the output doesn't care whether this term is
connected or not. '.e" means the end of the input file. When there is a format error in the
input file, the program will give the message: 'INPUT FORMAT ERRORF and abort the job.

AUTHOR
Sheng Fang

* UW/NW VLSI Release 2 1 6/4/84



PSPICE (1.VLSI) VLSI CAD Tools Manual PSPICE ( .VLSI)

NAME
pspice - prepare an input file for the Spice circuit simulator

SYNOPSIS
pspice [-i] [-no2s] [-d defsfilel [-m modelfile] [-e expfilel basename

DESCRIPTION
Pspice is a shell script for preparing Spice input from information from several sources. Pspice
runs sim2spice to convert from a basenameiem format circuit description to a Spice-compatible
description and modifies the sir2spice node label translation table to be acceptable Spice com-
ments. It then runs spcpp to translate a pseudo-Spice formatted file that contains symbolic
node labels to a Spice-acceptable file. Finally, pspice concatenates the circuit description file,
the translation table, a file of untranslated Spice input, and the translated Spice input into a
single file named basename-spcln. This file is usually an acceptable Spice input file. The
optional parameters can be used to cause parts of this process to be skipped.

The options and parameters are:

-nodTs Suppresses the execution of the sim2spice step.

-em Indicates that the files created in intermediate steps are to be deleted.

-d defsfile Specifies a file to be used as a sim2spice definitions file.

-m modelf ie Specifies a file that contains Spice input that is to be included (untranslated) in
the final output. It is intended that modeifile name a file containing Spice
IMODEL cards as well as other Spice commands that are independent of the
particular circuit being modeled.

-e expfile Specifies a file that contains pseudo-input for Spice. Spcpp will interpret strings
- in expflile that are bracketed by '<' and '>' as node names to be translated

into spice node numbers using the translation table (basename.nmes) created
by sim2spice. Lines containing bracketed tokens are converted into Spice com-
ments. It is intended that expfile contain Spice commands that describe the
experiment to be simulated on the circuit. The ability to use mnemonic node
names makes the preparation of Spice input much easier and it means that the
description of the experiment need only be specified once, even if the circuit is
modified and reextracted. If expfile is not specified then spcpp is not executed.

basename Specifies the base name for the files describing the circuit. If sim2spice is run
then a file named basename.ghm must exist. If sim2spice is not run then the files
basename.nuaes and basename.splce must exist.

FILES
basename.sim circuit description input to sim2spice
def!sf ie optional sim2spice defs input
basename.names modified sim2spice translation table output. This is read by spcpp (*)
basename.spice sim2spice output Spice format circuit element definitions (*)
modelfile optional Spice MODEL commands to be included in basename.spcln
expfi e input to spcpp containing pseudo-spice commands describing the experiment

to be simulated
basename.spcx translated output from spcpp (s)
basenane.spcin The Spice input deck created by concatenating basenane.spice,

basename.names, modelfile, and basename.spcx

Note: Files marked (o) are deleted by the -em option.

SEE ALSO
-.- sim2spice(1.vlsi), spcpp(1.vlsi)

spice(1.vls)

UW/NW VLSI Release 2 1 10/1/83

.i. " 'i . : - - .: . , , - . . . -. , ........... . _. . .. .-J-. . .-.



T- ' 9 w l

PSPICE ( 1.VLSI) VLSI CAD Tools Manual PSPICE ( .VLSI)

'I mextra(1.vlsi), cifplot(CAD1)
AUTHOR

Robert Fowler (UW/NW VLSI Consortium, University of Washington)

-< DIAGNOSTICS
K The error messages are intended to be self explanitory. Note that sim2spice and spcpp produce
K their own error messages.

BUGS5
The command line is long enough to tempt a user to call pspice from yet another shell script.
A better way to do this is to set up an alias for pspice with the commonly used options already

* set.

UWINW VLSI Release 2 2 10/1/93



RNL (I.VLSI) VLSI CAD Tools Manual RNL( .VLSI)

NAME
rnl - timing and logic simulator for VLSI circuits

SYNOPSIS
r l [cmdfile]

DESCRIPTION
Rnl (NetLisp) is a timing logic simulator for digital NMOS circuits with a lisp-like command
interpreter. It has also been used with many CMOS circuits with some success. The Rnl
User's Guide discusses some of the limitations found in simulating CMOS circuits. To use rni,
one needs a .slto file for the circuit to be simulated. This can be derived from the mask file
(e.g., CIF) or developed using netlist, a program that processes textual schematics.

One must first convert the Asim file to a network file suitable for use by rnd. To do this run
presim:

preslinfilename.slm netfile [config_params]

which converts the file filename slm into netfile, a binary file for rid. (see Presim User's Guide
for information on the various configuration parameters.

The optional cmdfile is the file rid initially reads for user input. Usually one prepares a com-
mand file that loads one or more library files containing RNL function definitions and reads in
the network from netfile. As simulation proceeds, user defined functions developed for test-
ing the circuit can be added to the command file. At a minimum the command file should
contain the commands

(load 'uwstd I')
(load 'uwsimi')
(read-network 'netfile')

When using the load command both netlist and rn search the current directory and then any
directories specified in the environment variable RNLPATH. The value of RNLPATH defaults
to SUWVSI1_TOOLS/libirnl. Read-network does not use RNLPATH. Netfile must be pro-
duced by presim. When the end-of-file is reached in the command file, input is taken from
stdin. Commands and formats to be used are given in the RNL User's Guide.

The top level of rn is a simple loop:

(1) read command from current input;
(2) evaluate command, performing specified actions;
(3) print the result and loop back to (1).

The following is a list of the objects that rn knows about

numbers -- signed integers. (16 bits on PDPIIs, 24 bits on VAXen, 28 bits on PDP10s).
- floating point.

strings sequences of characters enclosed in quotes C'). Useful as constants for file
names, print statements, etc. Special characters can be introduced into the
strings by using the backslash escapes:
jN n' newline
N r' return
Nt, tab
Nooo' ascii code "ooo' where ooo are octal digits

symbols variable names. Any sequence of characters that isn't a number, string, or some
special character -- starting symbols with a letter, followed by more letters,
numbers, and punctuation is usually a safe bet.

S ." nodes an electrical node.

UW/NW VLSI Release 2 1 4130/84



RNL ( 1.VLSI) VLSI CAD Tools Manual RNL ( I.VLSI)

lists a sequence of objects enclosed in parentheses. Standard LISP syntax applies,
including dot notation. The empty list "()' is also called 'nil'.

subrs primitive, or built-in, functions (like +).

The functions are listed by application area. The areas are:

" arithmetic functions
- predicates
- list functions
-IO functions
- miscellaneous functions
- special forms
- network/simulation functions
- functions defined in 'uwsimJi

SEE ALSO
netlist(l.vlsi), presim(L.vlsi), sifile(5.vlsi)

RNL User's Guide, VLSI Design Tools Reference Manual, UW/NW VLSI Consortium, Univer-
sity of Washington, (Christopher Terman, MIT Laboratory for Computer Science).

AUTHOR
Christopher Terman (MIT)

BUGS
User defined macros with the same name as a node in the net list puts rnl into an infinite
loop.

Propagation of X state information for cmos circuits is unreliable if the gate reduction in
presim is performed. If this information is required, suppress gate reduction with the -g
option in presim.

HUW/NW VLSI Release 2 2 4/30/84

. .. . * ' *
.. .'. . .. . . . . . . . . . . . . . . . . . . . . .



T %I
RULEC(CAD) UNIX Programmer's Manual RULEC(CAD)

rulec - Compile design rules for Lyra
SYNOPSIS

rule [-Io rules

DESCRIPTION
Rulec is a shell script with the following processing steps:

i) The actual Lyra rule compiler is invoked to translate the symbolic rule description,
rules#r, to lisp code, rules.l.

ii) The lisp compiler, Liszt, is invoked to compile rudesJ to rules

iii) ruleso is loaded into Lyraproto to generate an executable lisp Lyra, rades.

iv) The intermediate files rulesi, and rules.o are deleted.

The following options are supported:

-I (load only) No compilation is done. Previously compiled rules, rules, are loaded into
Lyraproto to generate an executable Lyra, rules. This option is useful mainly at
Berkeley, where Lyra proto changes frequently.

-, (save object) Nameo is not removed. Enables 'rie -1 rules' in the future.

FILES
cad/bin/rulec -- rulec shell script.
cad/lib/lyra/Rulecl - lisp rule compiler

"cad/lib/lyra/Lyra.proto -- Lyra sans compiled rules code.
"cad/lib/lyra/ex -- standard rulesets.
cad/lib/lyra/DEFAULTS -- gives default rulesets for Caesar technologies.

SEE ALSO
Lyra (CAD)
Liszt (1)

AUTHOR
Michael Arnold.

3rd Berkeley Distribution 10/24/82

." ,,I



SIM2SPICE (CADI) UNIX Programmer's Manual SIM2SPICE (CAD 1)

N sim2spice - convert from mextra format to Spice (circuit simulator) format

SYNOPSIS
dm2epke [-d defs] baserawm m

DESCRIPTION
Sim2spice reads the basenanmem, basexanJuades and basename aI files created by mextra and
creates a Spice readable circuit description, bawenowesplce. Spice requires node numbers and
sint2spice generates a translation table basename.mams which shows the mextra nodelabel
corresponding to a given node number.

The user can specify his/her own translation table by using the -d option, where def s a file
of definitions. A definition can be used to set up equivelences between am node names and
Spice node numbers. The form of this type of definition is:

Set sim name spice..munber [tech]

The tech field is optional. In nMOS, a special node, 'BULK', is used to represent the substrate
node. For cMOS, two special nodes, 'NMOS' and 'PMOS', represent the substrate nodes for
the 'n' and 'p' transistors, repectively. For example, for nMOS the Am node 'GND'
corresponds to Spice node 0, "Vdd' corresponds to Spice node 1, and 'BULK' corresponds to
Spice node 2. The defs file for this set up would look like this:

set GND 0 nmos
set Vdd 2 nmos
set BULK 3 nmos

A definition also allows you to set a correspondence between .ulm transistor types and and
Spice transistor types. The form of this definition is:

def sim tras spice.trans [tech]
Again, the tech field is optional. For nMOS these definitions would look as follows:

def e ENMOS nmos
def d DNMOS nmos

Definitions may also be placed in the '.cadrc' file, but the definitions in the deli file overrides
those in the '.cadrc' file.

Sim2spice also reads 'N' lines generated by mextra with the -o switch. In order to compute
capacitances from this it must have a set of conversion factors between length/area and capaci-
tance. These are specified in the sim2spice section of '.cadrc' file in exactly the same format as
in the mextra section of the '.cadrc' file (see mextra).

The program has been extended so that a comment line beginning with "I=" is interpreted as
an MIT jim style node equivalence line.

To create a complete Spice input file it is necessary to append applicable Spice model descrip-
tions as well as the user's Spice simulation commands to the basename.les file.

It is recommended in most cases that the user run pspice rather than sim2spice. Pspice incor-
porates the features of sim2spice but will in addition allow the user to build all of the Spice
input file in one step. Pspice also incorporates the features of spcpp.

FILES
basenamesim
basename.nodes
basenameal
basename.spice
basename.names

3rd Berkeley Distribution 10/1/83



SIM2SPICE (CAD 1) UNIX Programmer's Manual SJM2SPICE (CAD 1)

* SEE ALSO
mextra(l.vlsi), spice(1.vlsi). pspice(l-vlsi), spcpp(1.vlsi)

AUTHOR
Dan Fitzpatrick (UCB)

MODIFICATIONS
Neil Soiffer (UCB) - cMOS fixes.

Rob Fowler (UW/NW VLSI Consortium, University of Washington) -- node equivalence han-
dling and misc. bug fixes.

BUGS
The only pre-defined technologies are 'nmos' and 'cmos-pw'. Only one definition file is
allowed.

Warning: for nMOS circuits the node names 'ENMOS' and *DNMOS' are preempted by
sim2spice as synonyms for 'BULK'.

The node equivalence handling is not completely general. New nodes can be added to
equivalence classs, but classes cannot be merged. This is detected and an error message is
produced.

Berkeley Distribution 1/83 2



SIMSCOPE (I.VLSI) VLSI CAD Tools Manual SIMSCOPE ( I.VLSI)

NAME
simscope - view time-series of simulator output.

SYNOPSIS
OImseope

DESCRIPTION
simscope is designed to display signal output produced by RNL or SPICE on a Tek 4105 or a
GP-19 graphics terminal. To make hardcopies, you need a Tek 4695 printer (or compatible
hardcopy device) in conjunction with the Tek 4105 graphics terminal. Any program that
might periodically interfere with the display, notably sysline, should be switched off.

Geaerul Rulm for Udag simscope:

1. Names to be entered in response to simscope's requests may contain alpha as well as numer-
ical characters.

2. Numbers to be entered in response to simscope's requests may be fixed-point or floating-
point numbers (the latter format is also referred to as scientific notation). Examples of
fixed-point numbers are 123, 3.55, +45000, etc. Examples of numbers in scientific notation
are 3.5c4, 0.333e-9, 0.1e-9, +244.5e05, etc. Numbes may not be negative (negative time
scales, times, and positions do not make sense to simscope).

3. While entering a name or a number, characters typed erroneously may be deleted with "

either the RUBOUT key (CONTROL-H is equivalent) or the BACKSPACE key
(DELETE on some keyboards).

4. All numbers displayed by simscope are in scientific notation. The mantissa consists of one
digit, a decimal point, another six digits, the e indicating the exponent, the sign for the
exponent, and two digits for the exponent.

5. After reading a behavior file, simscope uses the same time units as those used in the
behavior file. These are nanoseconds (ns) in RNL-generated files and seconds (s) in
SPICE-generated files.

6. Indeterminate RNL signals (state OX') are displayed with a logic level of 0.5.

How to Start and Exit simscope

Work with simscope is most convenient if you change to the directory that contains the
behavior file you want to view. Being in that directory, simply enter simscope. simscopecomes
up with a greeting display. The window begin and end times are set to 0 (B = O.00000+00

and E = 0.000000+00) and, consequently, the time scale is 0 (T = 0.000000+00), too. The
mode (see below) is set to fixed-time-scale mode. The Y-scale, in units per division, is set to I
(Y - 100+00).

Below these indicators the menu is displayed, followed by the request that you hit a key indi-
cating the menu function you wish to select. Valid keys are: f, n, b, e, t, y, c, d, s, r, and q,
all of which may be entered as capitals (with the S-HFT key). Each letter represents the first

UW/NW VLSI Release 2 1 11/1/84

[,'-'-'," ",. """ "."'"'- "•-;" "" ' "' "-'" -'•"" " " "-"" - "-"''","'- " " '" """'".," ' '•'":'-',. '',, '- .'-'.'',. "-'-''-"-"'" ".'i,." ::'':-



SIMSCOPE (1.VLSI) VLSI CAD Tools Manual SIMSCOPE ( .VLSI)

letter of the corresponding menu function (see below). After you press any of these keys, the
corresponding function is immediately activated - no RETURN is necessary.

To exit simucope, press the "q' key (Quit).

simscope Functions

"Ue.

This function serves two purposes. First, it provides the following information about the file
presently loaded:

name of present behaviour file

file begin time (the time of the first signal entry in the file)

file end time (the time of the last signal entry in the file)

for each signal in the file:

first change (the time of the first entry of the signal in the file)

last change (the time of the last entry of the signal in the file)

y-position (the vertical position of the signal in the display; a number between
1 and 99, 1 is the lower end of the window, 99 is the upper end of the win-
dow).

name (the signal's name)

The second purpose of the File function is to facilitate the loading of a different file. If you
press y" (yes) in reply to the function prompt, File will ask you for the name of the new

behaviour file you want to load. Any other key will terminate the File function, display all
signals, and return you to the menu. If you enter a name, the corresponding file is read.
Reading the behaviour file may take awhile, during which time the cursor may flash at various
positions on the screen (hence the message: 'Reading file. Please wait. Don't worry if the cur-
sor flashes a bit.").

Nodes

You will be asked for a node name (default is the node last entered). simncope then asks
whether you want to display the node's signal or delete the node's signal from the display. +
or just RETURN means display, - means delete from display (the y-position of the signal is

set to zero). Next simscope asks for the position (vertically) in the window. Enter 99 for the
very top of the window, I for the bottom of the window, any number between 1 and 99 for an
intermediate position. (One division on the y-scale is equivalent to 5 positional units.)

UW/NW VLSI Release 2 2 111/84



SIMSCOPE (I.VLSI) VLSI CAD Tools Manual SIMSCOPE ( I.VLSI)

Reposition a signal by entering its name with Nodes, then enter the desired new position.

Assuming that you normally want to change more than one signal in a row, file information
(as in the File function) is displayed after you enter a y-position, providing you with a sum-
mary of the information on all nodes if the behaviour file.

Use the Display function to display the signals.

Sets the window begin time (CB = " at left side of the window).

In fixed-time-scale mode, a change of the window begin time moves the window (whose time
width remains unchanged) across the file.

In fixed-window-end mode, a change of the window begin time expands or contracts the win-
dow in a "rubber-band-like" fashion.

End

Sets the window end time (MB = "at right side of the window).

The time scale will be readjusted automatically to be consistent with the new window end
time.
The window begin time is not affected.

Setting the window end time will switch over to fixed-window-end mode. In this mode
changes to the window begin time will not affect the window end time, but will readjust the
time scale. You can use End for switching to fixed-window-end mode (without actually chang-
ing the window end time) by confirming the present (default) value of the end time. To do
that press "e", then just hit RETURN.

T-cale"

Sets the time scale of the window ("T = "below the window).

The window end time will be readjusted automatically to be consistent with the new time
scale.

The window begin time is not affected.

Setting the time scale will switch over to fixed-time-scale mode. In this mode, changes to the
window begin time will not affect the time scale, but will readjust the window end time. You
can use T-scale for switching to fixed-time-scale mode (without actually changing the time
scale) by confirming the present (default) value of the scale. To do that press "t", then just hit
RETURN.

Y-scale

Sets the vertical scale in units per division (*Y =" below "B ="). The default is 1, which is a
good value for RNL. The vertical extent of SPICE signals is usually larger, however (for
example 5 Volts, i.e. 5 units). Increasing the Y-scale allows you to fit more of the larger sig-
nals on the screen without overlapping.

UW/NW VLSI Release 2 3 11//84



SIMSCOPE (I.VLSI) VLSI CAD Tools Manual SIMSCOPE ( l.VLSI)

Copy

To make hardcopies, you need a Tek 4105 and a Tek 4695 printer (or compatible device). (If
you activate the Copy function on a GP-19 terminal, you will get the message: "Use a Tek 4105
terminal. (You can also use MTP). Hit any key to continue.")

Display

All signals with a y-position greater than 1 are displayed. Use this function to display the sig-
nals after you have made changes for any node (deletion, positioning or repositioning), or if
you want to refresh the display for any reason.

Save

All parameters determining the particular display state are saved for later retrieval. "Save"
first asks you for a name of the file in which you want to keep the present state. It then saves
in this file the present behaviour file name, window begin time, time scale, window end time,
mode (I for fixed-time-scale mode, 0 for fixed-window-end mode), and the names of all
displayed signals with their positions on the y-ais.

Saved states can be restored easily with the Retrieve function. You may conveniently con-
sider the names of "Save" files as markers (possibly with short names like 1, 2, 3, .... or al,
register3, LoadlO, etc.), which can be "jumped too with the Retrieve function.

Retrieve
Retrieve is the function used to restore a previously saved display state. You are asked for
the name of the file containing the state to be restored. If the state you want to restore
belongs to a behaviour file different from the one on which you are working presently, then
the new behaviour file is read (this may take some time).

Quit
This function terminates simscope and returns you to the UNIX shell.

The use of simacope to display RNL or SPICE results Involves the following steps:

1. Generate a behavior file.

(a) If you are using RNL, the directive

openplot "behavior-file

will cause the changes to all traced nodes to be written to behavior-file in addition to
- ~. ~-. being written to the terminal. Quotes are necessary if the file name has any punctua-

tion in it.

UW/NW VLSI Release 2 4 11/1/84

" " ... ,' " -• ". ", . " • . ... " . " ", .' '..',"L ,? ',.'Z "" " " ".",- "... .. .- - . .- .. .. . ,. . ..... .. ... -.



SIMSCOPE ( I.VLSI) VLSI CAD Tools Manual SIMSCOPE ( .VLSI)

The RNL directive

closeplot

will terminate the behavior file. If the entire RNL session is to be recorded closeplot is
not required, as the file will be terminated when RNL exits.

(b) If you are using SPICE, a behavior file may be specified as the third positional param-
eter of the SPICE command. Behavior records will be put on this file for all nodesspecified on the SPICE PLOT directive.

2. Use the F (File) function of sinscope to load the behavior file and get information on the
signals stored in it.

Use simscope's other menu functions to display any signal in the file on any position (vert-
ically) on the screen, change the time scale (window size) and window position. After you
have analyzed and positioned your signals, make a hard-copy, if desired.

EXAMPLE (Preparatis of a Behaview File with RNL)
The following example uses simscope to display the behavior of a 10 bit counter, cntrl0.net,
shown here in netlist format:

net file for 10-bit counter

half adder made from gates
(macro half adder (a b s c)

(local hI h2 h3)
(nand (hl 2 16) a b)
(nand (h2 2 16) a hl)
(nand (h3 2 16) b hl)
(nand (s 2 16) h2 h3)
(invert c hl)

)

; one cell of a counter
(macro cell (in out Cin Cout)

(local cl c2 c3)
(invert cl in)
(trans phil cl c2)
(invert c3 c2)
(half-adder c3 Cin out Cout)
(trans phi2 out in)

declare global node names
(node count c in out phil phi2)

; carry-in to first significant bit controls counting action
(connect count c.0)

generate the counter
(repeat i 110

(capacitance out.i 1.234)

UW/NW VLSI Release 2 5 11/1/84



SIMSCOPE (1.VLSI) VLSI CAD Tools Manual SIMSCOPE( 1.VLSI)

* (cell ini out!i c.(l- i) c!i)

The RNL control file, cntrl0.l, is as follows:

RNL initialization file for 10 bit ripple-carry counter

(load 'uwstdiw)I (load *uwsiml.1)
(read-network "cntrl0")

(setq report-form nil) This turns off the report generator

(sezq incr 1000)

bind symbols to node names

(chflag '(phil phi2 out.10 out.9 outA out.? out.6
out.5 out.4 out.3 out.2 out.1))

* (defun mnit (dummy)

(I '(count in.l in.2 in.3 in.4 i
in.6 in.? inS8 in.9 in.10))

(I '(phi2))

(step incr)
(I '(phil))
(step iner)

(x '(in.1 in.2 in.3 in.4 in.5
in.6 in.? in.8 in.9 in.10))

(h '(phi2))
(step incr)

(I '(phi2))
(step incr)

(h '(count))

(wr-report)

'done

(defvec '(bit bout out-l0 out.9 outS9 out.? out.6

out.S out.4 out.3 out.2 out.l))

UWN LIRelease 2. 6 U.~1/1/84



. SIMSCOPE ( 1.VLSI) VLSI CAD Tools Manual SIMSCOPE ( 1.VLSI)

(defvec '(dec dout out.10 out.9 out.8 out.7 out.6
out.5 out.4 out3 out2 out.1))

(def-report '(10 bit counter current state" newline W N

count (vec bout) (vec dout)))

Generate the behavior for the counter using RNL

netlist cntrl0.net cntrlOsim
presim cntrlOsim cntrl0
RNL cntrIOl

init # initialize the counter

openplot "cutrlO.beh" # open the behavior file

• (.beh stands for network behavior file)

* c 30 # run 30 clocks

exit 0 exit RNL

SEE ALSO
RNL(1.vlsi) SPICE(1.vlsi), mtp(1.vlsi)

SIMSCOPE User's Guide Release 20 Available from the UW/NW VLSI Consortium, Sieg Hall,
FR-35, University of Washington, Seattle, WA 98195

"User's Guide to RNL" "VLSI Design Tools Reference Manual", UW/NW VLSI Consortium,
University of Washington, (Christopher Terman, MIT Laboratory for Computer Science).

"SPICE User's Guide, "VLSI Design Tools Reference Manual," UW/NW VLSI Consortium,
University of Washington, (A. Vladimirescu et at., 15 Oct. 1980)

RESTRICTIONS
" . 1. In graphics mode, which is obviously required for simicope, the GP-19 can display upper

case characters only. simicope Rstill recognizes, and processes correctly, lower case charac-
ters. You have to know which characters in your file and which node names are upper
case, and which are lower case, and enter them accordingly. Otherwise, simscope may tell
you that it does not know the name you entered. The Tek 4105 terminal does not have
this problem.

2. The File function does not recognize the " (tilde) as part of a path name.

3. RNL and SPICE write only changes of signal levels to the behavior file. Therefore, a
signal's value before the first file entry is not known. simscope's strategy to deal with this
situation is to display this value as indeterminate (0.5, X in RNL).

4. The number of signals in a behavior file is liwuted to 20 (17).

VTW/NW VLSI Release 2 7 11/1/84
., ".



SIMSCOPE (1.VLSI) VLSI CAD Tools Manual SIMSCOPE( 1.VLSI)

5. The length of behavior files is restricted to 20,000 signal changes (ie. to 20,000 lines).
This could be extended easily, if need be.

BUGS
1. In case the number of signals in a behavior file is greater than 20 or the behavior file con-

tains more than 20,000 signal changes (i.e. to 20,000 lines), simscope crashes.

2. The first line of a behaviour file is discarded, because in the case of RNL behaviour files
this line contains irrelevant information different from the information of all other lines.
Therefore, the very first signal change of a SPICE behaviour file is lost. This is not noti-
cable in most cases, however.

3. Some versions of SPICE produce behaviour files that contain floating point numbers for-
matted in a non-standard manner. Encountering of a non-standard format in the
behaviour file causes simscope to crash. A typical case is that a number like "0.000e.-7 is
given as '0. e-7*. sinucope recognizes the first format only. The behaviour file can be
mended easily by using an editor to globally replace . e by .OOe.

These bugs will be removed with the next release of sim scope.

AUTHOR
Rudolf W. Nottrott (UW/NW VLSI CONSORTIUM)

V
[

*UWINW VLSI Release 2 811/I/84

[." . .. .- . . . . .. . . -. ..... .



SPCPP(I.VLSI) VLSI CAD Tools Manual SPCPP(I.VLS[)

NAME
spcpp - Spice (circuit simulator) input pre-processor

SYNOPSIS
SPcpp [-cJ [-in] [-d LrJ f-t man [-o ona,,,] ,ae

DESCRIPTON
SpCPp is a program that translates bracketed text tokens in an input file into other text strings.

It is intended to allow users of spice to prepare their simulation input using mnemonic node
names rather than the numeric node numbers required by Spice commands. The program has
two major modes of operation. If the user does not specify a file that contains a translation
table, then spcpp builds a translation table itself numbering the tokens from zero as it
encounters them. Alternatively, the user can specify the name of a file containing a transla-
tion table to be used. In particular, the names file created by sim2spice is usable as a transla-
tion table file.

The options and parameters are:

-C Indicates that the first non-whitespace word of each line of the translation table file
should be skipped over. This is useful if your translation table has an asterisk ('.')
in column I of each line to allow it to be read by spice as comments.

-sn Indicates that n lines at the beginning of the translation table file should be skipped
over. If no number is specified then only the first line of the file is skipped.

-d Ir Redefines the token delimiters to be '1' and 'r' respectively. The default delimiters
are '<' and'>'.

-tt name Specifies a file that contains a translation table (default is to build a translation
table as described above). Each line of this file should have at least two non-
whitespace words on it. If the -c option is specified then the first word on each
line is ignored. The next word is interpreted as a string to be translated and follow-
ing one is interpreted as the target string into which it is translated. Any subse-
quent words on the line are ignored. For Spice input preparation the target string
should be a numeral. The -s option allows the file to be prefaced by one or more
lines that spcpp will ignore.

-e oname Specifies a file into which the output is to be written. If this option is not used
then the output is written to iroot:.pcx where iroot is obtained by stripping away
any tags from iname.

iname Specifies the name of the file to process.

A bracketed token is defined to be a left delimiter character, zero or more spaces, a word (the
token) not containing either right or left delimiters, zero or more spaces, and a right delimiter
character. Unmatched delimiter characters are not allowed in any context. Bracketed tokens
are not allowed to span lines. Tokens and the strings that they translate into are limited to be
at most 40 characters each.

Any line that contains no bracketed tokens is simply copied from the input to the output. If a
line does contain a bracketed token then the input line is written into the output a Spice com-
ment line. An output line follows immediately. If the line is valid, then the output line hasI
the untranslated parts immediately below the corresponding parts of the commented input
line with the target strings substituted for the bracketed tokens. If an error is dctected, then
the output line has a caret ('') immediately below the point at which the first error is
detected. An error message line then follows. Since the scanning of the line is abandoned
there may be subsequent undetected errors in the remaining part of the line.

UW/NW VLSI Release 2 1 10/1/83

'd ... .



SPCPP(l.VLSI) VLSI CAD Tools Manual SPCPP( 1.VLSI)

Example:
If the following lines are contained in the translation table file:

Vdd 1
Input 55
Output 107
foo 23
bar 45

then spcpp will, upon seeing the lines:

.plot trans v(< Input> ) v(< Output>), i(< Vdd>)
+ v(< foo> ), v(< bar>)

will output the lines:

* •plot trans v(< Input> ) v(< Output>) v(< Vdd>)
.plot trans v(55) v(107) v(1)
+ 4 v(< foo> ), v(< bar>)
+ v(23), v(45)

Note that spcpp correctly handles Spice continuation cards.

Note also that the substitution process is not recursive. That is, once a token has been
translated, the translated string is not rescanned.

tj- The usefulness of spcpp for simulating a circuit extracted from a layout depends upon the user
being able to ensure that his mnemonic node labels will be retained through the extraction
process. The mextra and sim2spice manual entries will help with this.

Pspice is a shell script that runs sim2spice and spcpp and concatenates several files is useful for
*! -preparing Spice inputs from .sir files.

FILES
ainame

* .-:,irootspcx
oname
tnaie

SEE ALSO

mextra(1.vlsi), pspice(1.vlsi), sim2spice(1.visi), simtools(l.vlsi), spice(1.vlsi),

SPICE User's Guide, VLSI Design Tools Reference Manual, UW/NW VLSI Consortium,
University of Washington, (SPICE Version 2G6 User's Guide, A. Vladimirescu et al., 15
October 1980)

AUTHOR
_. Robert Fowler (UW/NW VLSI Consortium, University of Washington)

DIAGNOSTICS
The error messages are intended to be self explanatory. If spcpp encounters a syntax error on
a line then it suspends processing on that line and writes it as a Spice comment to the output
file. It then writes a line containing a caret (') under the character at which scanning failed
and finally, a line containing an error message. It then goes on to process the remaining lines
of the file. If errors have been encountered then at the end of the output file spcpp writes
messages to the effect that errors have been encountered and exits with status 1. The error

UW/NW VLSI Release 2 2 10/1/83

,s. .,p

!a... . . .. . . .. . . . . . . .. . . . . . -

/ " ", -' " '"". . . . . . ." '" "" .". .".. . . . . .""."" ,. .""'. . , ," .,-''"": """,., -""'- '"-; ' .-



SPCPP (1.VLSI) VLSI CAD Tools Manual SPCPP( l.VLSI)

messages written to the output file begin with dollar signs. In addition, some number of mes-
sages are directed towards the standard error output.

BUGS
The target strings are not checked to see whether they are valid numerals or not. This can be
regarded as either a bug or a feature.

The target string must fit into the space from the left to right token delimiter inclusive. This
is normally not a problem since most node numbers will be small integers and the available
space will be at least three characters. This was done so that the input lines and the
translated outputs would line up vertically.

UWINW VLSI Release 2 3 10/1/83

=..°



SPICE ( I.VLSI) VLSI CAD Tools Manual SPICE ( I.VLSI)

NAME
spice - circuit simulator

SYNOPSIS
spice infile outfUle (nupilel

*DESCRIPTION
Spice reads a circuit description from ifile. Output is written to outfile. and error messages to
standard error. An optional output file, mpfile, can be used by mtp to obtain a multiple time
series plot on a Printronix.

Spice calls spice2g6, a general-purpose circuit simulation program for nonlinear DC, nonlinear
transient, and linear AC analyses. Circuits may contain resistors, capacitors, inductors,
mutual inductors, independent voltage and current sources, four types of dependent sources,
transmission lines, and the four most common semiconductor devices: diodes, BJTs, JFETs,
and MOSFETs.

Spice2g6 has built-in models for the semiconductor devices, and the user need specify only the
pertinent model parameter values. The model for the BJT is based on the integral charge
model of Gummel and Poon; however, if the Gummel-Poon parameters are not specified, the
model reduces to the simpler Ebers-Moll model. In either case, charge storage effects, ohmic
resistances, and a current-dependent output conductance may be included. The diode model
can be used for either junction diodes or Schottky barrier diodes. The JFET model is based
on the FET model of Shichman and Hodges. Three MOSFET models are implemented; MOSI
is described by a square-law I-V characteristic, MOS2 is an analytical model while MOS3 is a
semi-empirical model. Both MOS2 and MOS3 include second-order effects such as cbannel
length modulation, subthreshold conduction, scattering limited velocity saturation, small size
effects and charge-controlled capacitances.

To build a Spice input file for your circuit from mextra output run sim2spice or pspice.

SEE ALSO
mextra(1.vlsi)
mtp(l.vlsi), sim2spice(1.vlsi), pspice(l.vlsi), spcpp(I.vlsi)

SPICE User's Guide, VLSI Design Tools Reference Manual, UW/NW VLSI Consortium,
University ' Washington, (SPICE Version 2G6 User's Guide, A. Vladimirescu et at., 15
October l9bu).
Program Reference for Spice2, E. Cohen, ERL Memo. ERL-M592, Electronics Research
Laboratory, University of California, Berkeley, June 1976.

SPICE2: A Computer Program to Simulaje Semiconductor Circuits, L.W. Nagel, ERL Memo.
ERL-M520, Electronics Research Laboratory, University of California, Berkeley, May 1975.

The Simulation of MOS Integrated Circuit Using SPICE2 A. Vladimirescu and Sally Liu,
UCB/ERL M80/7, University of California, Berkeley, February 1980.

AUTHOR
(UCB)

* BUGS
MOSFET Model, Level=2 does not work, due to a charge conservation problem (it grows).

UW/NW VLSI Release 2 1 10/1/83



TPLA (CADI) UNIX Programmer's Mauuai TPLA ( CAD 1)

NAME
tpla - technology independent PLA generator

SYNOPSIS
tpla [-acv] [-s style] 1-o output jile input file

DESCRIPTION
Tpla is a PLA generator that generates PLAs in several different styles and technologies. The
input format is compatible with eqntott, see PLA(5) for details. Tpla does not handle split and
folded PLAs.

Tpla is a program written with the Tpack system.

STYLES OF PLAs AVAILABLE
The following styles of PLAs are currently supported:

BDc Buried contacts, nMOS, cis version (inputs and outputs on same side of the
PLA). Clocked inputs and outputs are supported. Berkeley design rules.

Strafw Buried contacts, nMOS, trans version (inputs and outputs on opposite sides of
the PLA). Clocked inputs and outputs are supported. Berkeley design rules.

Mcl Mead & Conway design rules. Butting contacts, nMOS, cis version (inputs and
outputs on same side of the PLA). Clocked inputs and outputs are supported.

Mtrans Mead & Conway design rules. Butting contacts, nMOS, trans version (inputs
and outputs on opposite sides of the PLA). Clocked inputs and outputs are
supported.

Tcli Just like Dcli except that it has protection frames and terminals added (a spe-
cial mod for EECS at Berkeley).

Ttrans Just like Strans except that it has protection frames and terminals added.

li9Mr
Complies with GTE 5 micron, isocmos process (lambda = 2.5 microns). Inputs
and outputs on same side of PLA. Fabricated and tested.

CS3cli Complies with MOSIS 3 micron bulk CMOS process (lambda = 1.0 microns).
Berkeley design, simulated but not fabricated. Inputs and outputs on same side
of the PLA.

CS3tran
Same as CS3cli except inputs and outputs on opposite sides of the PLA.

It is easy to create a template for a new style of PLA, and tpla(CAD5) has informa-
tion on how to do it. If you develop a particularly nice template and would like to
share it, send it to "mayo@berkeley' or "ucbvaxknayo".

Tpla handles CIF symbol naming directives and input & output labels as described in
pla(CAD5).

OPTIONS
-I Clock the inputs to the PLA, if this feature is suppo:ted for this style.

-0 Clock the outputs to the PLA, if this feature is supported for this style.

-G nam Insert an extra ground line every num rows in the AND plane and every nunt columns
in the OR plane.

-S num Stretch power and ground lines by mum lambda.

-T Be verbose, and show (in the Caesar output) how the PLA was constructed from its
basic components.

3rd Berkeley Distribution 3/17183 1



TPLA (CADI) UNIX Programmer's Manual TPLA(CADI)

-V Be verbose, and print out information about what tpla is doing. This option implies

-s produce Caesar format (this is the default)

-c produce CIF format

-. The next argument is taken to be the base name of the output file. The default is the
input file name with any extensions removed. If the input comes from the standard
input and the -o option is not specified then the output will go to the standard output.

-a The next argument specifies the style of PLA to generate. (This causes tpla to use the
file cad/Ub/tpla/p-style.tp as its template).

-I nun Set lambda to nun centimicrons. (200 is the default)

-t The next argument specifies the template to use, this normally defaults to the standard
library. A .tp suffix is added if no suffix was specified. This option is useful for gen-
crating styles of PLAs that are not included in the standard library.

input file
The file containing the truth-table. If this filename is omitted then the input is taken
from the standard input (such as a pipe).

other options
This program inherits several more options from Tpack(CAD).

FlLVE

cad/bin/tpla - executable
cad/src/tpla/* - source
cad/lib/tpla/po.ip -- standard templates for PLAs

SE ALSO
eqntott(CAD), presto(CAD), plasort(CAD), pla(CADS), tpla(CAD). tpack(CAD),
mkpla(CAD)

AUTHOR
Robert N. Mayo

BUGS
The defaults for the -G and -S options have no way of knowing what the grounding require-
ments are for the style of PLA actually being generated.

If the template CS3cis or CS3tran is used with an odd number of minterms and the -G option
is used, there will be design rule violations; extra pieces of P implant along the bottom of
the OR plane, which will have to be manually removed.

The templates Tcis and Ttrans imply a technology (fnmos) not supplied on the Berkeley tape.
These templates will not be useful unless the associated technology files are obtained.

This program inherits any bugs that may exist in tpack(CAD).

3rd Berkeley Distribution 3/17/83 2



VIC (I.VLSI) VLSI CAD Tools Manual VIC ( I.VLSI)

Lf

NAMZ
vic - view an integrated circuit layout (version 2.1).

' SYNOPSIS ,vie [options] symbolname

-.'. DESCRIPTION

Vie is an interactive graphics display program for integrated circuits that is technology
independent and has a built-in hardcopy feature. It understands layouts in Caesar data base
format. It currently displays only on the GP19 and Tek4105 graphics terminals, but it can pro-
duce a hardcopy on a number of devices.

The options are as follows:

-t technology
Supported values of technology are nmos and cmas-pw. Default is cmes-pw.

-h plotter
Supported values for plotter are HPI221CT, HP7221AB, HP738O, HP7BOD and
Tek4662_31. Default is HP7580.

-8 graphics
Supported values for graphics are GPI19 and Tek4183. Default is GP19.

-f format
The only Choice for format of symbol to be read is ca (Caesar files).

COMANDS
For all the commands, only the portion enclosed in parentheses need be typed and a list of the
possible parameters for each command (if any) and current values are shown after the com-
mand in the menu.

(lay)ms < list>
sets the layers to be plotted. The list consists of layer names seperated by spaces, or
the entire list may be preceded by a 0+0. In the latter case, the given layers are added
to the plot ALREADY on the screen (it should be pointed out that a space must fol-
low immediately after the "+', followed by the additional layers). A null list sets all
layers to be plotted. Abbreviations are allowed. The first layer with the abbreviation
as its leading part will be selected. (Thus, metal can be abbreviated m, me, met or
meta, whereas metal2 will require the entire name. Warning: layer names such as
metal2 and cut2 must, therefore, follow metal and cut, respectively in the technology
files.) Default is all layers.

(a)estihg levels < number>
set the number of levels in the symbol's hierarchy to be plotted. Any symbol at a level
greater than this will show up only as a bounding box with its symbol name in the
lower left corner. The current symbol is at level 1, its children are at level 2, and so
on. Default is 1.

(w)indow
window in on the plot. Use the graphics cursor to move to the desired lower left
corner of the window and hit the space bar. Then move to the upper right corner and
do the same.

(hard)copy
produce a hardcopy of exactly what is shown on the terminal screen on a pen plotter.
A grid may be placed over the hardcopy by specifying anything greater than zero
when the program prompts for grid size. For this option to work, the user's terminal
must communicate with the host through the plotter, in order that the plotter may
intercept the plotting commands. For the Tck410S, the grid must be displayed prior to

UW/NW VLSI Release 2 1 6/1/84

4... . .. .. . ....... .



VIC ( I.VLSI) VLSI CAD Tools Manual VIC ( 1.VLSI)

hard copying.

(lab)elu < value>
turn node labels on/off. Default is on.

(p)lot plot on the graphics terminal with the current options in effect.

(v)lew view on the graphics terminal the current symbol fully instantiated with all layers and
node labels.

(l)raphlcs
return to the graphics screen (Tek410 only).

(gr)d put a grid on the graphics screen (Tek4105 only).

(he)lp show the menu.

explain each command.

(q)ult quit from the program.

(s)ymb.I < mm>
select the symbol to be plotted. The only symbols that can be specified are those in
the sub-hierarchy of the top level symbol on the command line. Note that this is not a
facility to reinitialize the vic with a new symbol. Executing this command with no
name causes the list of symbols to be displayed. Default is the highest level symbol.

< control> C
causes current operation in progress to cease. On the Tek4105, to terminate a hard-
copy in progress, depress the < shift> cancel key on the keyboard and type a carriage

Io return.

DIAGNOSTICS
If an error occurs, a message is written to standard error and the program exits with a non-
zero status.

FILES technology.tec2

technology.cmp
symol.att
symbol.ca

SEE ALSO
caesar(CADl), tec(5.vlsi)

AUTHORS
Pat Bates
Larry McMurchie
Wayne E. Winder
Bruce A. Yanagida

TTW/NW VLSI Release 2 2 6/1/84



CAESAR (I) UNLX Programmer's Manual CAESAR (1)

NAM
caesar - VLSI circuit editor

SYNOPSIS
caesr [-a - graphics..port -4 tabletport -p path -m monitor type -d display type ] (file ]

DESCRIPTION
Caesar is an interactive system for editing VLSI circuits at the level of mask geometries. It
uses a variety of color displays with a bit pad as well as a standard text terminal. For a com-
plete description and tutorial introduction, see the user manual 'Editing VLSI Circuits with
Caesar, (an on-line copy is in cad/doc/caesartblms).

Command line switches are:

-2 Execute in non-interactive mode.

-2 The next argument is the name of the port to use for communication with the graph-
ics display. If not specified, Caesar makes an educated guess based on the terminal
from which it is being run.

-t The next argument is the name of the port to use for reading information from the
graphics tablet. If not specified, Caesar makes an educated guess (usually the graphics
port).

-p The next argument is a search path to be used when opening files.

-m The next argument is the type of color monitor being used, and is used to select the
right color map for the monitor's phosphors. "std" works well for most monitors,
"pale' is for monitors with especially pale blue phosphor.

-"- -d The next argument is the type of display controller being used. Among the display
types currently understood are: AED512, UCBS!2 (the AED512 with special Berkeley
PROMs for stippling), AED767, AED640 (an AED767 configured as 483x640 pixels),
Omega440, R9400, or Vectrix.

When Caesar starts up it looks for a command file with the name .caesar' in the home direc-
tory and processes it if it exists. Then Caesar looks for a .caesar file in the current directory
and reads it as a command file if it exists. The .caesar file format is described under the long

.- . command source.

You generally have to log in a job on the color terminal under the name "sleeper (no pass-
word required). This is necessary in order for the tablet to be useable. Sleeper can be killed
either by typing two control-backslashes in quick succession on the color display keyboard (on
the AED displays, control-backslash is gotten by typing control-shift-L), or by invoking the
shell command kilsleeper with the correct process id. On some systems you have to log your-
self in and run sleeper as a shell command. On still other systems there is no login process for
the color display port, so it isn't necessary to run sleeper at all.

The four buttons on the graphics tablet puck are used in the following way:

.* left (white)
.. Move the box so that its fixed corner (normally lower-left) coincides with the crosshair

position.

-- C rigot (green)
Move the box's variable corner (normally upper-right) to coincide with the crosshair
position. The fixed corner is not moved.

top (yelew)
Find the cell containing the crosahair whose lower-left corner is closest to the
crosshair. Make that cell the current cell. If the button is depressed again without

4th Berkeley Distribution 1

.... •.... ....... ..... ...... ... . .......



CAESAR (1) UNIX Prc;rammer's Manual CAESAR (1)

moving the croshair, the parent of the current cell is made the current cell.

bettm(blw)
Paint the area of the box with the mask layers underneath the crosshair. If there are
no mask layers visible underneath the croshair, erase the area of the box.

SHORT CO ANDS
Short commands are invoked by typing a single letter on the keyboard. Valid commands are:

a Yank the information underneath the box into the yank buffer. Only yank the mask
layers present under the crosshair (if there are no mask layers underneath the
croshair, yank all mask layers and labels).

C Unexpand current cell (display in bounding box form).

d Delete paint underneath the box in the mask layers underneath the croshair (if there
are no mask layers underneath the crosshair, the delete labels and all mask layers).

, Move the box up I lambda.

a Toggle grid on/off.

I Redisplay the information on both text and graphics screens.

q Move the box left I lambda.

r Move the box down 1 lambda.

s Put back (muff) all the information in the yank buffer at the current box location.
Stuff only information in mask layers that are present underneath the crosshair (if -
there are no mask layers underneath the crosshair, stuff all mask layers plus labels).

'u Undo the last change to the layout.

w Move the box right one lambda.

x Unexpand all cells that intersect the box but don't contain it.

s Zoom in so that the area underneath the box fills the screen.

C Expand current cell so that its paint and children can be seen.

X Expand all cells that intersect the box, recursively, until there are no unexpanded cells
intersecting the box.

Z Zoom out so that everything on current screen fills the area underneath the box.

S Move the picture so that the fixed corner of th. box is in the center of the screen.
6 Move the picture so that the variable corner of the box is in the center of the screen.

-L Redisplay the graphics and text displays.

.. Repeat the last long command.

LONG COMMANDS
Long commands are invoked by typing a colon character ("f). The cursor will appear on the
bottom line of the text terminal. A line containing a command name and parameters should

. .be typed, terminated by return. Each line may consist of multiple commands separated by
semi-colons (to use a colon as part of a long command, precede it with a backslash). Short
commands may be invoked in long command format by preceding the short command letter
with a single quote. Unambiguous abbreviations for command names and parameters are
accepted. The commands are:

4th Berkeley Distribution 2

,-i-I

.' .. .. . . ., . . - .. - .. . - -, - -. . -, -. - .. . ... . .. . .-- .-- -.- .- ,, . ,-,- .-. , ,.. .,, ,,-



CAESAR (1) UNIX Programmer's Manual CAESAR (1)

align < scale>
Change crosshair alignment to < scale>. Crosshair position will be rounded off to
nearest multiple of <scale>.

array < zdn> < yse>
Make the current cell into an array with < xsize> instances in the x-direction and

< ysize> instances in the y-direction. The spacing between elements is determined by
the box x- and y-dimensions.

array < abot> < ybot> < atop> < ytop>
Make the current cell into an array, numbered from < xbot> to < xtop> in the x-
direction and from <ybot> to <ytop> in the y-direction. The spacing between
array elements is determined by the box x- and y-dimensions.

box <keyword> <amount>
Change the box by <amount> lambda units, according to <keyword>. If <key-
word> is one of 'left", 'right', 'up, or "down", the whole box is moved the indicated
amount in the indicated direction. If < keyword> is one of 'xbot', 'ybot, xtop, or
"ytopr, then one of the coordinates of the box is adjusted by the given amount.
< amount> may be either positive or negative.

batten <number> < a> < y>
Simulate the pressing of button <number> at the screen location given by < x> and
< y> (in pixels). If < x> and <y> are omitted, the current crosshair position is

used.

clf -ships < name> < scale>
Write out a CIF description of the layout into file <name> (use edit cell name by
default; a Wdtf* extension is supplied by default). <scale> indicates how many cen-
timicrons to use per Caesar unit (200 by default). The -s switch causes no silicon
(paint) to be output to the CIF file. The -b switch causes bounding boxes to be drawn
for unexpanded cells. The -1 causes labels to be output. The -p switch causes a CIF
point to be generated for each label. The -x switch causes Caesar not to automatically
expand all cells (they are expanded by default).

cload < file>
Load the colormap from < file>. The monitor type is used as default extension.

clockwise < degrees> [y)
Rotate the current cell by the largest multiple of 90 degrees less than or equal to
< degrees>. <degrees> defaults to 90. If the command is followed by a 'y" then the
yank buffer is rotated instead of the current cell.

colornmap < layers>
Print out the red, green, and blue intensities associated with < layers>.

colormap < layers> < red> < geen> < blue>
Set the intensities associated with < layers> to the given values.

cepyeU
Make a copy of the current cell, and position it so that its lower-left corner coincides

with the lower-left corner of the box.

cUve < ie>
Save the current colormap in < file> (the monitor type is used as default extension).

deleteell
Delete the current cell.

editeell < file>
Edit the cell hierarchy rooted at <file>. A .ca" extension is supplied by default. If

Berkeley Distribution 3

2>;.:.



S . , - - , - - -. . . . - _ . -. . -~ i . , - - - - - -2 W - ..

CAESAR (1) UNIX Programmer's Manual CAESAR (1)

information in the current hierarchy has changed, you are given a chance to write it
out.

eruspalw < layers>
For the area enclosed by the box, erase all paint in <layers>. If <layers> is omitted
it defaults to "or.

fill < directim> <layers>
<direction> is one of "left, 'right', "up, or "down'. The paint under one edge of
the box (respectively, the right, left, bottom, or top edge) is sampled; everywhere that
the edge touches paint, the paint is extended in the given direction to the opposite
side of the box. <layers> selects which layers to fill; if omitted then a default of "'
is used.

flshcell
Remove the definition of the current definition from main memory and reload it from
the disk version. Any changes to the cell since it was last written are lost.

petcel < me>
This command makes an instance of the cell in <file> (a " aW extension is supplied
by default) and positions that instance at the current box location. The box size is
changed to equal the bounding box of the ceil.

gridspacing
The grid is modified so that its spacings in x and y equal the dimensions of the box.
The grid is set so that the box falls on grid points.

gripe The mail program is run so that comments can be sent to the Caesar maintainer.

height <s ze>
The box's height is set to < size>. If <size> is preceded by a plus sign then the fixed
corner is moved to set the correct height; otherwise the variable corner is moved.
<size> defaults to 2.

Wedtmfyceil < name>
The current cell is tagged with the instance name given by <name>. This feature is
not currently supported in any useful fashion. <name> may not contain any white
space.

label < name> < position >
A rectangular label is placed at the box location and tagged with < name>. < name>
may not contain any white space. <position> is one of "center', ieft,, oright', "topa,
or "bottom'; it specifies where the text is to be displayed relative to the rectangle. If
omitted, < position> defaults to "top".

lyrai <mromse>

The program "cad/bin/lyra is run, and is passed via pipe all the mask features within
3U of the box. The program returns labels identifying design rule violations, and these
are added to the edit cell. If < ruleset> is specified, it is passed to Lyra with the -r
switch to indicate a specific ruleset. Otherwise, the current technology is used as the
ruleset.

sacro < character> < command>
The given long command is associated with the given character, such that whenever
the character is typed as a short command then the given command is executed. This
overrides any existing definition for the character. To clear a macro definition, type
".macro < character> e, and to clear all macro definitions, type "macro'

mark <markl> < mak2>
The box is saved in the mark given by < markl>. <markl> must be a lower-case

4D
~~4th Berkeley Distribution 4.

,,. -. .. ... .. . .. .. . ..,,. . .. .". . .-.... '. ,." .+. ' .. +.. . .".- .. . . . ...... . ......-..... ..-.-.... .- . .. ".:- .' ,



CAESAR (1) UNIX Programmer's Manual CAESAR (1)

letter. If < mark2> is specified, the box is changed to coincide with < mark2>.

movecell < keyword>
The current cell is moved in one of two ways, selected by <keyword>. If <key-
word> is 'byposition', then the cell is moved so that its lower-left corner coincides
with the lower-left corner of the box. This also happens if no keyword is specified. If
<keyword> is 'bysize', then the cell is displaced by the size of the box (this means
that what used to be at the fixed corner of the box will now be at the variable corner).

paint < layers>
The area underneath the box is painted in < layers>.

path < path>
The string given by <path> becomes the search path used during file lookups.
< path> consists of directory names separated by colons or spaces. Each name should
end in '.

peek <layers>
Display all paint underneath the box belonging to <layers>, even for unexpanded
cells and their descendants.

popbox < mark>
If < mark> is specified, then the box is replaced with the given mark. Otherwise the
box stack is popped and the top stack element overwrites the box.

pushbox < mark>
The box is pushed onto the box stack. If < mark> is specified then it is used to
overwrite the box, otherwise the box remains unchanged.

put <layers>
The yank buffer information in < layers> is copied back to the box location. If
< layers> is omitted, it defaults to '*SI'.

quit If any cells have changed since they were last saved on disk, the user is given a chance
to write them out or abort the command. Otherwise the program returns to the shell.

rest The graphics display is reinitialized and the colormap is reloaded.

return The current subedit is left, and the containing edit is resumed.

savecell < name>
If < name> is specified then the current cell is given that name and written to disk
under the name (a ".ca* extension is supplied by default). If < file> isn't specified
then the cell is written out to the disk file from which it was read.

scroll <direction> < amount> < units>
The current view is moved in the indicated direction by the indicated amount.
<direction> must be one of 'left', "right', "up', or "down', < amount> is a floating.
point number, and < units> is one of 'screens' or 'lambda'. < units> defaults to
'screens', and < amount> defaults to 0.5.

search < regeap>
Search labels and bounding boxes underneath the box for text matching < regexp>.
See the manual entry for ed for a description of < regexp>. Push an entry onto the
box stack for each match. Even unexpanded cells are searched.

sideways [y]
Flip the current cell sideways (i.e. about a vertical axis). If the command is followed
by a 'y' then the yank buffer is flipped instead of the current cell.

source < fename>
The given file is read, and each line is processed as one long command (no colons are

4th Berkeley Distribution



CAESAR (1) UNIX Programmer's Manual CAESAR (1)

necessary). Any line whose last character is backslash is joined to the following line.

subedit Make the current cell the edit cell, and edit it in context.

technology < fue>
Load technology information from < file>. A '.tech' extension is supplied by default.

apuidedown [y]
Flip the current cell upside down. If the command is followed by a "y" then the yank
buffer is flipped instead of the current cell.

"sage < file>
Write out in <file> the names of all the files containing cell definitions used any-
where in the design hierarchy.

- view < mark>
If < mark> is specified, set view to it, otherwise, change the view to encompass the
entire edit cell.

Svlsiblelayers < layers>
Set the visible layers to include just <layers>. Preface <layers> with a plus or
minus sign to add to or remove from the currently visible ones.

width <die>
Set the box width to < size> (default is 2). Move variable corner unless width is pre-
ceded by "+', else move fixed corner.

writeall
Run through interactive script to write out all cells that have been modified.

yank < layers>

Save in the yank buffer all information underneath the box in <layers>. < layers>
defaults to "4".

"- ycel < name>
If <name> is specified, do the equivalent of ':getcell <name>*. Then expand
current cell, yank it, delete the cell, and put back everything that was yanked. This
flattens the hierarchy by one level.

ysave < name>
Save the yank buffer contents in a cell named <name>. A ".ca extension is provided
by default.

LAYERS
nMOS mask layers are:

p or r Polysilicon (red) layer.

d or g Diffusion (green) layer.

" Metal (blue) layer.

. I ory Implant (yellow) layer.

b Buried contact (brown) layer.

c Contact cut layer.

o Overglass hole (gray) layer.

o Error layer: used by design rule checkers and 2ther programs.

CMOS P-well mask layers are (using technology cmos-pw):

p or r Polysilicon (red) layer.

4th Berkeley Distribution 6



AD-Ai58 699 VLSI (VERY LARGE SCALE INTEGRATION) DESIGN TOOLS 2/5
REFERENCE MANUAL RELEASE 30(U) WASHINGTON UNIV SEATTLE
DEPT OF COMIPUTER SCIENCE AUG 85 TR-85-87-83

UNLSIID M80-8--82FG95 N

mhEmhohEEmhohI
mo..fflflfl..fflfl l



IIIIIN IIIII lll Ig
.8

'o

1111125 111j.8

MICROCOPY RESOLUTION TEST CHART

44Br.'NATIONAL BUREAU OF STANDARDS-1I963-A

I-



CAESAR (1) UNIX Programmer's Manual CAESAR (1)

d or g Diffusion (green) layer.

a Metal (blue) layer.

C Contact cut layer.
P or I P+ implant (pale yellow) layer.
w P-well (brown stipple) layer.

* Overglass hole (gray) layer.
* Error layer: used by design rule checkers and other programs.

Predefined system layers are:
* AUl mask layers.

I Label layer.

S Subci layer.

C Cursor layer.
G Grid layer.

a Background layer.

SYSTEM MAK
C The bounding box of the current cell.
E The bounding box of the edit cell.
F The previous view.

a The bounding box of the root coll.
V The current view.

FILES
cad/new/caesar, 'cad/doc/caesar.tblms

SEE ALSO
cif2ca(1)

AUTHOR

John Ousterhout

DIJGS

4th Berkeley Distribution 7



CDRC (1.VLSI) VLSI CAD Tools Manual CDRC ( I.VLSI)

NAMK edre, edrescript, drc, drescript - CMOS-BULK 3 micron and NMOS VLSI design rule checkers

SYNOPSIS
cdrc [-ks] bwenmwcif
cdrcwrlpt baseamecif dre [-kul henaawcif [Lamba]
drcwcrpt basenmnw if

DESCRIPTION
Cdre analyzes a CMOS CIF file for geometric rule violations using MOSIS cmos-bulk 3 micron

process rules. Drc analyzes an NMOS CIF file for geometric rule violations using MOSIS
(buried contact) rules. Both cdrc and dre are limited to rectilinear, orthogonal geometry.
Wires are taken apart into rectangles, and round fBashes are approximated by squares.
Polygons and non-manhattan rectangles are simply ignored.

The options are as follows:

-ik Keep around all intermediate files.

-u Keep around files of unfiltered error messages.

For large files, cdrc or drc should be run in batch mode, as a 7000 transistor chip takes over 2
11/780 cpu hours.

When cdrc or drc find violations, they create CIF files of rectangles marking the geometric
edges involved. These markers are placed on the error layer (CZ) for cdrc and on the glass
layer for drc. Separate files are created for each class of error, named err.errortype.bAenamu.

To abort cdrc or drc hit the BREAK key and wait while it outputs some error messages until it
eventually quits.

(C}drcscript will merge {c)drc output files, labels indicating etor type, and the original CIF
file into a single file, drebaaenamexdt. If this file is processed by cif2ca the results may be
viewed with caesar. Errors show up as light blue boxes in the error layer for cdrc or as
orange boxes in the glass layer for drc. Each pair of boxes involved in an error will have an
associated errortype label which will be located at the midpoint between the centers of the
two boxes.

MOSIS CMOS/BULK 3 micron process rules checked by edrc:

Errortype Microns Rule
wWp 3 P-Well width
sWp 9 P-Well to P-Well spacing assuming all p-wells are

connected to vu
dW 4 Diffusion size
dS 4 P+ diffusion to P+ diffusion spacing

4 N+ diffusion to N+ diffusion spacing
4 N+ diffusion to P+ diffusion spacing outside P-well
4 N+ diffusion to P- diffusion spacing inside P-well

pWp+DS 8 P+ diffusion in N-substrate to P-well edge spacing
SWpn+WnS 7 N4- diffusion in N-substrate to P-well edge spacing

pWn+DS 4 N+ diffusion in P-well to P-well edge spacing
pW 3 Poly width
pS 3 Poly to poly spacing
pSd 2 Field poly to diffusion spacing
pOg 3 Poly gate extension over field
.pSd 3 Gate poly to diffusion spacing
p+Od 2 P+ mask overlap of diffusion

2 N+ mask to P+ diffusion spacing

UW/NW VLSI Release 2 1 6/4/84

t. °. . ..-........-...-...-..........-........-...-....-...-....-.................... •.....-......-.".."....-- - .N ",". ,,-.'- ",



CDRC ( 1.VLSI) VLSI CAD Toois Manual CDRC ( .VLSI)

Tn+S 3.5 P4- mask overlap of poly in diffusion
p4-S 3 Pl- mask to P4- mask spacing in diffusion

3 N+- mask to N+ mask spacing in diffusion
Errortype Microns Rule
Dp+s 2 P4- mask to N+ diffusion spacing

2 N+- mask overlap of diffusion
Tp+s 335 N44 mask overlap of poly in diffusion P4- mask to

poly spacing in diffusion inside P-Welt
bent Cut must have metal and (poly or diffusion) underneath
WC 3 Contact width
cL 8 Maximum contact length
cs 3 Contact to contact spacing
Poe 2 Poly overlap of contact
PMCx 235 Poly overlap of contact in direction of metal
cSpc 3 Contact to poly channel spacing
mOc 2 Metal overlap of contact
dOc 2 Diffusion overlap of contact
cp+s 3 Contact to P4- and N4+ mask spacing
ucfp4- 4 Shorting contact extension into P4- diffusion
scfn4- 4 Shorting contact extension into N4- diffusion
mW 3 Metal width
mS 4 Metal to metal spacing
m2w 5 Metal2 width
m2S S MetalZ to metal2 spacing
c2w 3 Via width
c2S 3 Via to via spacing
m20c2 2.5 Metal2 extension over via
mOc2 235 Metal extension over via
CC2s 3 Via-cut separation
dOv 3 Diffusion overlap of via
dSv 3 Diffusion to via spacing when they dont overlap
pOV 3 Poly overlap of via
pSv 3Poly to via spacing when they dont overlap

M2pst 1 Metal2, metal and poly intersection 1 width
MPMM2x 4 Metal extension over the above intersection I
PPMM2x 3 Poly extension over the above intersection
PM2st 5 Metal2 metal intersection(no poly) to metal2 poly

intersection( with no metal ) spacing
M4PM2st S Metal2 poly intersection (no metal) to metal spacing
PPM2st 5 Metal2 metal intersection (no poly) to poly spacing

NMOS rules checked by dre:
Errortype Rule Lambda
dS diffusion spacing 3.0
iOg implant-gate overlap 1.5
iSg implant-gate spacing 2B
pS poly spacing 2D0
pOg poly-gate overlap 2.0
pSd poly-diff spacing 1.0
cs cut-cut spacing 2.0
dcSg diff-cut to gate 2.0
mW metal width 3.0
iNOS implants with no gates

V/NW VLSI Release 2 2 &14/84

S-N&- Z7. %:'N.. N



CDRC (I.VLSI) VLSI CAD Tools Manual CDRC( I.VLS[)

XC cuts with no D or P
dW diffusion width 2.)
ntdW non-xtr diff width 2.0
iS implant-implant 1.5
pW poly width 2.0

gW gate width 2.0
cW cut min width 2
cL cut max length 6.0
mOe metal-cut overlap 1.0
dec diff-cut overlap 1.0
pOc poly-cut overlap 1.0
sBP buried-poly spacing 2.0
sBD buried-diffusion spacing 2.0
oBD buried-diffusion overlap 2.0
oBU buried-contact surround 1.0
bW buried-contact width 2.0

SEE ALSO
caesar(cadl), cif2ca(cadl)

A Geometric Design Rule Checker, Dorothea Haken, VLSI Document V053, Carnegie Mellon, 9
June 1980.

FILES
basename.cif
errferrortype basename
drebasenameJcif
errbasenamecif

AUTHOR
Dorothea Haken (CMU)

BUGS
The poly-overlap-gate check fails when the overlap is exactly zero (drc only).

Spacing checks do not consider mutual connectivity. Sometimes weird things will happen, and
the generated spurious errors can be filtered by the bin-filter program, which examines local
connectivity. Cuts in diffusion or poly that do not have metal covering are not reported.

Cuts in diffusion or poly that do not have metal covering are not reported (drc only).

Diagonal spacing checks do not consider the true diagonal distance.

SUGGESTIONS
Do not have basenames beginning with a number. Otherwise, this leads to serious errors in
that cdrc assumes that to be the lambda value.

Try to have as short a basename as possible. This is because some flavors of UNIX restrict the
length of filenames. Some of the intermediate files that are generated have quite long names.

The default lambda is 50 centimicrons for the cdrc routines. This scaling is done to overcome
the inability of the routines to check for non-integer lambda violations.

It is advisable to run {c)drc in the background (batch mode), directing the output to a file, so
you can look at the file later if needed.

UW/NW VLSI Release 2 36/4/84

... . . . . . . . .. . . . . . . . . . . . . .. . .• - .. . . . .-. -. ° •

"- ~~~~~~~~~~~. . .. ...... ...-...... ...-.". . . . ... .. .. •......•..-.,-..."O-,,



a --.

CIF2CA (CAD) UNIX Programmer's Manual CIF2CA (CAD)

NAMS
cif2ca - convert Cw? files to CAEsAR files

SYNOPSIS
citka [ 4 lambda I [-t tech ] [-o offset ] ciffile

DESCRIPTION
cif2ca accepts as input a CEF file and produces a CAESAR file for each defined symbol. Specify-
ing the -I lambda option scales the output to lambda centi-microns per lambda. The default
scale is 200 centi-microns per lambda. The -t tech option causes layers from the specified
technology to be acceptable. The default technology is nmos. For a list of acceptable techno-
logies, see caesar (1). The -9 offset option causes all CIF numbers to be incremented by
offset. This is useful when the CIF numbers are used for Caesar file names, and when several
CIF files with overlapping numbers are to be joined together in Caesar.

Each symbol defined in the CIF file creates a CAESAR file. By default, the Ales are named
"symbolrna", where m is the CtF symbol number (as modified by the -a offset). Symbols can
also be named with a user-extension "9" command, giving a name to the symbol. definition
which encloses it. Ca commands which appear outside of symbol definitions are gathered into
a symbol called, by default, "project", and are output to the CAESAR file "project.ca".

SE3 ALSO
Caesar(1)

DIAGNOSTICS
Diagnostics from cif2ca are supposed to be self-explanatory. Each diagnostic gives the line
number from the input file, an error class (informational, warning, fatal, or panic), the error
message, and the action taken by cif2ca, usually to ignore the Cw command. Informational
messages usually refer to limitations of cif2ca. Warning messages usually refer to inconsisten-
cies in the CIF file, these will typically result in CAESAR files which do not accurately reflect
the input Ci? file. Fatal messages refer to fatal inconsistencies or errors in the CIF file. A fatal
error terminates cif2ca processing. Panic messages refer to internal problems with cif2ca. If
any diagnostics are produced, a summary of the diagnostics is produced.

AUTHOR
Peter B. Kessler, bug fixes and new features by John Ousterhout and Steve Rubin.

BUGS
"Delete Definitions" commands are not implemented. cif2ca also has certain restrictions due
to restrictions of CAESAR: e.g. non-manhattan objects are not allowed.

Library cells are not automagically included.

Some care should be taken in naming symbols, since symbol names are used for CAESAR file
names. Names which are not unique in the first 14 characters will attempt to create the same
CAESAR file, and only the last one wins. Similarly, one should avoid trying to have two
projectca files in the same directory.

4th Berkeley Distribution local



CIFPLOT(CADI) UNIX Programmer's Manual CEFPLOT(CAD1)

NAM3
cifplot - CIF interpreter and plotter for displaying VLSI circuits

SYNOPSIS
clfplot [oPio]ufi].d [file.ef ...1

DISCRIPTION
Cifplos takes a description in Cal-Tech Intermediate Form (CIF) and produces a plot. CIF is
a low-level graphics language suitable for describing integrated circuit layouts. Although CIF
can be used for other graphics applications, for case of discussion it will be assumed that CIF
is used to describe integrated circuit designs. Cifplot interprets any legal CIF 2.0 description
including symbol renaming and Delete Definition commands. In addition, a number of local
extensions have been added to CIF, including text on plots and include files. These are dis-
cussed later. Care has been taken to avoid any arbitrary restrictions on the CIF programs that
can be plotted.

To get a plot call cifplot with the name of the CIF file to be plotted. If the CIF description is
divided among several fies call cifplor with the names of all files to be used. Cifplot reads the
CIF description from the files in the order that they appear on the command line. Therefore
the CIF End command should be only in the last file since cifplot ignores everything after the
End command. After reading the CIF description but before plotting, elfp1ot will print a esti-
mate of the size of the plot and then ask if it should continue to produce a plot. Type y to
proceed and a to abort. A typical run might look as follows:

% clt plot lb.clf smrtereif
Window -5700 174000 -76S0 168900
Scale: 1 micron is 0.004075 inches
The plot will be 0.610833 feet
Do you want a plot? y

After typing y cifplot will produce a plot on the Benson-Varian plotter.

Ciplot recognizes several command line options. These can be used to change the size and
scale of the plot, change default plot options, and to select the output device. Several options
may be selected. A dash(-) must precede each option specifier. The following is a list of
options that may be included on the command line:

-w zmln zmez ym/n ymax
(window) This option specifies the window; by default the window is set to be large
enough to contain the entire plot. The windowing commands lets you plot just a small
section of your chip, enabling you to see it in better detail. Xmin, xnrax, ymin, and
ymaz should be specified in CIF coordinates.

-5 float
(stal) This option sets the scale of the plot. By default the scale is set so that the
window will fill the whole page. Fleat is a floating point number specifying the
number of inches which represents I micron. A recommended size is 0.02.

-I layerlist
(layer) Normally all layers are plotted. This option specifies which layers NOT to plot.
The layerlist consists of the layer names separated by commas, no spaces. There are
some reserved names: allTezt, bboz, outline, text, pdatName, and symboiName.
Including the layer name alrlext in the list suppresses the plotting of text; bbox
suppresses the bounding box around symbols, outline suppresses the thin outline that
borders each layer. The keywords text, polatName, and symbolName suppress the
plotting of certain text created by local extension commands. text eliminates text
created by user extension 2. potntName eliminates text created by user extension 94.
symbelName eliminates text created by user extension 9. allTet, potntName, and

0'h Berkeley Distribution 6/1/84

. .,/ ... ,. ', , . " ' .- . - -.. .. " . . -" 4.. -. '-,'. : .. ' .-- . '--' "-" -"- " ,4... "..' ",,'..-'. .



CIFPLOT (CAD1) UNIX Programmer's Manual C[FPLOT(CADI)

symboiNamo may be abbreviated by at, pm, and a repectively.

-c a (copies) Makes n copies of the plot. Works only for the Varian and Versatec. Default
is I copy.

-d a (depth) This option lets you limit the amount of detail plotted in a hierarchically
designed chip. It will only instanciate the plot down n levels of calls. Sometimes too
much detail can hide important features in a circuit.

-9 n (grid) Draw a grid over the plot with spacing every n CIF units.

-h (bait) Flot at half normal resolution. (Not yet impiemented.)

-0 (extenions) Accept only standard CIF. User extensions produce warninp.

-I (non-Interaective) Do not ask for confirmation. Always plot.

-L (List) Produce a listing of the CIF file on standard output as it is parsed. Not recom-
mended unless debugging hand-coded CIF since CIP code can be rather long.

-a n (approximate) Approximate a roundflash with an s-sided polygon. By default n equals
8. (I e. roundflashes are approximated by octagons.) If as equals 0 then output circles
for roundflashes. (It is best not to use full circles since they significantly slow down
plotting.) (Full circles not yet implemented.)

-b fftert*
(baner) Print the text at the top of the plot.

-C (Comments) Treat comments as though they were spaces. Sometimes CIF files created
at other universities will have several errors due to syntactically incorrect comments.
(L.e. the comments may appear in the middle of a CIF command or the comment does
not end with a semi-colon.) Of course, CIF files should not have any errors and these
comment related errors must be fixed before transmitting the file for fabrication. But
many times fixing these errors seems to be more trouble than it is worth, especially if
you just want to get a plot. This option is useful in getting rid of many of these com-
ment related syntax errors.

-r (rotate) Rotate the plot 90 degrees.

-N (Printroniz) Send output to the Printronix.

-V (Varian) Send output to the Varian. (This is the default option.)

-W (Wide) Send output directly to the Versatec.

-S (Spool) Store the output in a temporary file then dump the output quickly onto the
Versatec. Makes nice crisp plots; also takes up a lot of disk space.

-T (Terminal) Send output to the terminal. (Not yet fully implemented.)

-Gh
-Ga (Graphics terminal) Send output to terminal using it's graphics capablities. -Gh indi-

cates that the terminal is an HP2648. -Ga indicates that the terminal is an AED 512.
-1 basesAse

(eXtractor) From the CIF file create a circuit description suitable for switch level
simulation. It creates two files: baseuame.dm which contains the circuit description,
and base .nameode which contains the node numbers and their location used in the
circuit description.
When this option is invoked no plot is made. Therefore it is advisable not to use any
of the other options that deal only with plotting. However, the -w, I, and -a options
are still appropriate. To get a plot of the circuit with the node numbers call cifplot
again, without the -X option, and include baseamen.odes in the list of CIF files to be

"i Berkeley Distribution 6/1/84 2*1l



CIFPLOT (CADI) UNLX Programmer's Manual CIFPLOT(CAD1)

plotted. (This file must appear in the list of files before the file with the CIF End
command.)

-e x (cpies) This option specifies the number of copies of the plot you would like. This
allows you to get many copies of a plot with no extra computation.

-P paternf e
(Fatter.) This option lets you specify your own layers and stipple patterns. PaternfUe
may contain an arbitrary number of layer descriptors. A layer descriptor is the layer

6% name in double quotes, followed by 8 integers. Each integer specifies 32 bits where
ones are black and zeroes are white. Thus the 8 integers specify a 32 by 8 bit stipple
pattern. The integers may be in decimal, octal, or hex. Hex numbers start with '0x';
octal numbers start with '0'. The CIF syntax requires that layer names be made up of
only uppercase letters and digits, and not longer than four characters. The following
is example of a layer description for poly-silicon:

-Nr W.0080806 004040404 0x02020202 OxOlOlOlO1
O--OSO08 SO 0404040 0x20202020 0x10101010

* -.. -F fonfilenamn
(Fast) This option indicates which font you want for your text. The
foefiLen ama must be in the directory Iurlffilvfom. The default font is Roman
6 point. Obviously, this option is only useful if you have text on your plot.

-0 fliename
(Output) After parsing the CIF files, store an equivalent but easy to parse CIF
description in the specified file. This option removes the include and array commands
(see next section) and replaces them with equivalent standard CIF statements. The
resulting file is suitable for transmisaion to other facilities for fabrication.

In the definition of CIF provisions were made for local extenions. All extension commands
begin with a number. Part of the purpose of these extensions is to test what features would

* be suitable to include as part of the standard language. But it is important to realize that
these extensions are not standard CIF and that many programs interpreting CIF do not recog-
nize them. If you use these extensions it is advisable to create another CIF file using the -O
options described above before submitting your circuit for fabrication. The following is a list
of extensions recognized by cfplot.
8I filename;

(Include) Read from the specified file as though it appeared in place of this command.
Include files can be nested up to 6 deep.

8A smndxdy;
(Army) Repeat symbol s m times with dx spacing in the x-direction and a times with
dy spacing in the y-direction. s. m, and n are unsigned integers. dx and dy are signed
integers in CIF units.

1 message;
(Print) Print out the menage on standard output when it is read.

2 ,texe trawrform
2c -sexe tria oem;

(TeWt m Plot) Texi is placed on the plot at the position specified by the transforma-
tion. The allowed transformations are the same as the those allowed for the Call com-
mand. The transformation affects only the point at which the beginning of the text is
to appear. The text is always plotted horizontally, thus the mirror and rotate transfor-
mations are not really of much use. Normally text is placed above and to the right of
the reference point. The 2C command centers the text about the reference point.

4th Berkeley Distribution 6/1/84 3



CIFPLOT (CAD1) UNIX Programmer's Manual CIFPLOT (CADI )

9 Rome;
(Name symbol) name is associated with the current symbol.

9 RawzXy;

94 namexy layer;
(Nam point) name is associated with the point (z, y). Any mask geometry crossing
this point is also associated with name. If layer is present then just geometry crossing
the point on that layer is associated with name. For plotting this command is similar
to text on plot. When doing circuit extraction this command is used to give an explicit
name to a node. Name must not have any spaces in it, and it should not be a number.

cad/.cadrc
/.cadrc
cad/bin/vdump

/usr/lib/vfont/R6
Iusrltmp/#cif*

S1 ALSO
cadrc(cadS)

A Golde to LSI Implementation, Hon and Sequin, Second Edition (Xerox PARC, 1980) for a
description of CIF.

AUTHOR
Dan Fitzpatrick (UCB)

MODIFICATIONS
(UW/NW VLSI Consortium, University of Washington)

BUGS
The -r is somewhat kludgy and does not work well with the other options. Space before
semi-colons in local extensions can cause syntax errors.

The -O option produces simple cif with no scale factors in the DS commands. Because of this
you must supply a scale factor to some programs, such as the -I option to cf2ca.

The -X option does not work for non-manhattan circuits.

4th Berkeley Distribution 6/1/84 4

'w J.~r. 2 . . ..,J ...--



DECNOR(1.VLSI) VLSI CAD Tools Manual DECNOR( 1.VLSI)

NAM

decNor - Generates CMOS dynamic NOR form decoder layouts.

SYNOPMSI
decNr [option] Iults [OuFiej

DESCRItON
DeeNar is a program for generating CMOS dynamic NOR form decoder layouts in the *caesar'
format. DecNr constructs caesar composition cells from caesar leaf cells and/or other compo-
sition cells. All caesar cells reside in the Jca directory. Leaf cells have names of the form
decNor'.ca while composition cells have names of the form "OutFile*.ca. Leaf cells must be
copied from SUW VLSITOOLSlibgenerators/decNor into !ca before running decNer. The
completed layout resides in "OutFile*.ca. Inputs are the number of inputs to the decoder.
-OutFile" can not begin with the string "decNor. The default for "OutFie" is the string
SdecGen".

; -. As deeNer is a cSl-based program it creates fles of the form *.bd in ics.

The following table describes decNor's options although an abreviated listing can be obtained
by invoking decNer with no arguments. Options prepended by '-" are active while those with
-, have not been implemented.

-f Stripped down layout for floor planning. Cells which occupy a large part of the
decoder are represented in dummy layers allowing faster layout generation.

-t Layout of worst case path for timing estimates. Cells which are not part of the
slowest electrical path are represented in dummy layers allowing faster generation.
extraction and simulation.

-s A schematic of the decoder. Cells are represented as symbols (wires and transistor)
drawn in black ink (labels) on a yellow background (P+ mask).

Op P-type decode transistors. Since N-type transistors have a lower on resistance they are
the default decode transistor type.

-I Labels are added to inputs and outputs. Since labels increase the generation time they
are not added as the default. When included they are prepended with wOutFile.

-b banks
The array of decode transistors will be repeated banks " times. This feature can be
used to distribute decoder outputs to a number of places with minimal additional area.
Default is one.

00 outs
Stretch decoder to give * outs lambda output spacing. This option simplifies connec-
tion by abutment.

of Ins
Grow decode xsistors to give ins lambda input spacing. This option allows the
decoder to operate faster.

*'+ pvr
Grow input inverters to fill vertical size of "vet lambda. This option allows the
decoder to operate faster.

ob hop
Grow evaluate/charge xsistors to flH horizontal size of * hot * lambda. This option

' ,allows the decoder to operate faster.
U.NW. -R a-/

3UW(NW VLSI Release 2 1//8

a.-,.--.



.

DECNOR (1.VLSI) VLSI CAD Tools Manual DECNOR ( .VLSI)

FILES
JcaI0utFile*,ca
Jca/OutFileo.bd
Jca/dccNor .. ca

Sm ALSO
caesar(CADl), cfi(S.vlsi)

AUTHORS
David J. Morgan

5UW/NW VLSI Release 2 2 6/1184



EQNTOTT (t) UNIX Programmer's Manual EQNTOTT (I)

NAME
eqntott - generate truth table from Boolean equations

SYNOPSIS
equtou [-I] [4 -a I [ -r I . I [ -key [ cc options I I files I

DESCRIPTION
Eqnott generates a truth table suitable for PLA programming from a set of Boolean equations
which define the PLA outputs in terms of its inputs. When neither -f nor -s is specified, input
and output variables must be mutually exclusive. If the -s option is given, an output variable
may be used in an expression defining another output variable: the expression for the first out-
put is substituted for the the name of that output when it is encountered. The -f option
allows outputs to be defined in terms of their previous values in a synchronous system (e.g. an
FSM): the same name appearing as both an input and an output may be thought of as refer-
ring to two distinct variables, or the same variable at two distinct times. (The -f and -s
options are mutually exclusive.)

If the -r option is specified, eqnott will attempt to reduce the size of the truth table by merg-
ing minterms. The -R option (implies -r) forces eqnvott to produce a truth table with no
redundant minterms. The truth table generated does not represent a minimal covering of the
truth functions, but does preserve some "don't care" information for some other program to
use.

If the -1 option is specified, eqntott will output a truth table which includes the name of the
pla and its inputs and outputs as specified in PLA(5).

The form that the output takes is controlled by the string key, described below. Input is taken
from files (standard input default) and run through the C macro preprocessor of cc(1), to per- ...m._
mit comments, file inclusion, macros, and conditional processing. The cc options -D, -I, and -U
are recognized and passed on to the preprocessor.

Equath. Syntam

name = expression;
Associates a truth function defined by expression with the output name, both of which
are defined below. If an output name is assigned more than one expression, the effect
is identical to a single assignment to the output of the logical disjunction of all the ori-
ginal expressions.

NAME = name;
Defines the name of the pla to be "name". If not specified, the name of the pla is the
name of the input file with any postfixes removed.

INORDER = name [namel...;
Defines the order in which inputs appear in the truth table. If not specified, the order
is that in which the inputs appear in the source.

OUTORDER = name [name]...;
Defines the order in which outputs appear in the truth table. If not specified, the
order is that in which the outputs appear in the source.

Ezpraish. Syntax:

name
A name is used to specify an input or output. The name must begin with a letter or
underscore; subsequent characters may be letters, digits, underscores, asterisks,
periods, square brackets, or angle brackets.

7th Edition



EONTOTF (1) UNIX Prcgrammer's Manual EQNTOTT (I)

_ ZERO (or 0)
Builtin input that always has the value zero (false).

ONE (or 1)
Builtin input that always has the value one (true).

Builtin input that always has the value 'don't care'.

(expression)
Parenthesis may be used to change the order of evaluation.

! expression
Gives the complement of expression.

expression & expression
Gives the logical conjunction of the two expressions. The & operator associates left to
right, and has the same precedence as L

expression I expression
Gives the logical disjunction of the two expressions. The I operator also associates left
to right, and has a lower precedence than &.

Output Ferm

The output format may be controlled to a small extent using the character string key. The
string is scanned left to right, and at each character code, a piece of output is generated
corresponding to the character encountered. If -.key is not specified, the string "iopte" is used,
or "iopfte" with the -f option.

code outpw generted
1 .

f f output-number input-number
(one line for each feedback path, numbers refer to Or- and And-plane truth table
column numbers)

h a human readable version of the truth table (q.v.)
i .I number-of -inputs

1 .1 input-name
(one line for each input, in order)

I a truth table with the name of the pla, its inputs and its outputs
p .p number-of-pro.luc termn
a a number-of-product-termu
* .0 number-of-outputs
0 .0 output-nwm

(one line for each output, in order)
S PLA connectivity summary
t PLA personality matrix (q.v.)
V eqntott version information

The truth table (personality matrix) consists of a line for each minterm, beginning with that
minterm and followed by the values of the various outputs. The minterm is composed of a
single character (0, 1, or -) for each input in the conventional fashion. The output values are

represented by one of the three characters (0, 1, or x). Some white space is added for
.- • readability's sake.

'7

7th Edition 2

pr~ . -- .-. -. . -- . . . .. . . . . . .. • , , ._



EQNTOTT (1) UNIX Programmer's Manual EQNTOTT (1)

In the human readable format, each line of output represents one term in the sum-of-products
expression for an output. The line begins with the name of the output, which is enclosed in
parentheses for the value "don't care'. Then follow the names of the inputs in the product;
complemented inputs are preceded by a .

SEE ALSO
cc(1).

DIAGNOSTICS
Syntax errors are written to the standard error output and should be self-explanatory.

BUGS
-I should be the default, but some pla tools can't handle the full format. Eqntott likes its
option seperately; ie. -f -1 works but -f8 doesn't.

AUTHOR
Bob Cmelik.
-1 option added by Jeff Deutsch.

7th E1

*g 7th Edition 3 "

. -. - , - . - -. - . .' . - .-. . . - - , - - ,. - . . . - .. -. - ., - . " .- - '. ' . ,,.,-. .-. -..-.- .... ,. . " }



GEN CONTROL (I.VLSI) VLSI CAD Tools Manual GEN CONTROL ( 1.VLSI)

NAMh
gen-Pontrol - generate a control file for RNL

SYNOPSIS:
gsuttcestrul

(no arguments)

DESCRIPTION
gen control is a program designed to quickly specify a control file for RNL simulation.
gencoarol provides for the proper insertion of quotes and use of parenthesis.

Typical file extensions to the basenames are assumed.
When starting up the gencomrol program, the user will be prompted for the necessary

'-- -information to be provided.
Assumed standard libries are:

.wid.I & owim.

Prompts:

1. Basename:
The control file will be written in: basem .J
In the J or control file assumed extensions are:

for the log file: basenamerilog
for the network: basene
for the plotfile: basenoinebek

2. Comment:
A one line comment, which could be a short comment about the simulated circuit can be
entered.

3. Simulation step increment value:
Enter the value of the simulation step in 0.1 ns units. The appropriate lisp command is
automatically generated.

4. Definition of normal vectors:
To define a vector enter its name.
Then there will be a prompt for its type (bit, bin, oct, hex,dec)
Followed by a prompt for its elements.
A <CR> means skip this entry.

5. Definition of single indexed vectors:
Enter baaemam and after prompts: type, start index and number of elements.

6. Definition of a set of double indexed vectors:
Enter basename and after prompts: type, indexsizel and indexsize2.

7. Definition of report for end of simulation step:
-" "-'. One of two types can be specified:

Just a < CR> specifies the normal def-report contents;
<any character> <CR> specifies an optional type in which multiple vectors with double
indexed nodes can be specified.
Next there will be a prompt for a comment to be included in every report (this portion only is

"'W/NW VLSI Release 3 06/01/85

.. ....... ./...................................... ,.Y~&'



GEN-CONTROL(1.VLSI) VLSI CAD Tools Manual GENCONTROL(I.VLSI)

optional).
Then there will be prompting until a < CR> is entered for

nodenames (just enter the names) or
a vector name (first enter 'vec' and then the name).

In case of the optional report format, the multiple vector specification format is obtained by
reponding with 'veci'. Additional prompts will follow for basename and size.

8. Selection of output mode: logic analyzer style output:

-. Enter any character for selecting logic analyzer style output and a < CR> for standard out-

put.
A report stating the order of columns in the output of RNL will be automatically generated.

9. Selection of output mode: glitch detection reporting:
Enter any character for selecting glitch detection and a < CR> for standard reporting of
transients.

10. Definition of nodes with transient or glitch reporting:
Individual node names, vectors with single indexed node names and vectors with double
indexed node names can be specified. Respond appropriately for names vectorsizes.

11. Definition of logic trigger conditions:
There are prompts for defining trigger conditions on individual node names, single vectors in
invec type format, and single vectors in bitinvec type format. r --

12. Definition of additional RNL simulation set-up commands:
* - Enter the desired RNL commands. Terminate with an additional < CR>.

13. Definition of a timing pattern file:
Respond with < CR> if there is no such file (unlikely) or any other character if such is the
case.
The filename assumed is: bmuame.tims

14. Definition of wrap-up RNL commands:
Enter the desired simulation wrap-up commands (often just 'exit').
There is no syntax checking in gencotrol. gen comroi will put the quotes and parentheses at
the right places. Any errors can be easily corrected using a standard text editor on the output

*. - file: basenwif.
This file can be inspected for correctness. Errors may be reported by RNL when running the
simulation.

FILES
The output file is an ascii file and can be inspected. The files containing the library functions,
network etc. must be at the correct place.
uwstd J. uwaimJ, bew Jnmu. basenam, basenamerlog, baaenanv bek, baena esime

SEE ALSO
' gunume manual instructions

UW/NW VLSI Release 3 2 06/01185

7..........................................................................



GEN-CONTROL (I VLSI) VLSI CAD Tools Manual GEN CONTROL( 1.VLSI)

AUTHOR
Henriecus Koeman, John Fluke Mfg. Co., Inc.

* DIAGNOSICS
none

BUGS
Please let the author know.

fuI

*UW(NW VLSI Release 3 3 06/01/85



GEN TIME (1.VLSI) VLSI CAD Tools Manual GENTIME( l.VLSI)

NAME
genjime - generate a stimulus pattern for ml.

SYNOPSIS
senjtime iLpwju output jie

DESCRIPTION
genjime is a program designed to quickly specify input signal patterns which can be read by
the lisp command interpreter of RNL. gentime accepts a simple syntax without quotes and
parentheses and accepts a simple means for defining states or commands for specific moments
in time. The output of gen..time is typically read by the main control file, which contains the
set-up information for the simulation. This control file can easily be obtained using the
gencontrol program. One of the commands should 'load' the outputfile of genjtime.

Syntax summary:
ime-rnge < start-time> < stoptime>

(must be the first command)
node-.name < period> < statel> < timel> < state2> < time2> .
invec < vector name> <period> <valuel> <time1> .
bilinvec <vector name> <period> <bitvaluesl> <timel>

(note no spaces between individual bitvalues as in the
equivalent rnl command.)

command < period> < rnlcommandl> < timel>
(no alternate syntax allowed in rnicommands here)

report < period> < timel> < time2>
(report 1 0 generates a report after every time

step)
(must be the last command in the inputfile)

mask <period> <enable time> <disable time>
(applies only to command line immediately following)

maskinv <period> <disable time> <enable_time>
(applies only to command line immediately following)

The output file is an ascii file and can be inspected for programmed activity as a function of
the time increments.

FURTHER EXPLANATIONU
The rules for the input file are discussed in more detail in the following, in particular those
for the more complex waveforms.

Rule 01: Comments.
All lines starting with a semicolon are considered comments and are ignored.

Rulb 2: Simulation interval definition must come first.
The first command in the -stim file must be the specification of the simulation interval; syntax
and example:

time-range <start_time> <stoptime>
time-range 0 3D

Note: Every value of time is in number of simulation step increments 'incr'. The global
variable 'incr' is assigned a value with (setq incr <number>) where the number is

5 UW/NW VLSI Release 3 1 o6 1185



OL*

GEN TIME (t.VLSI) VLSI CAD Tools Manual GEN TIMF( l.VLSI)

the size of the simulation step in 0.1 ns; this is done in the ('I') RNL control file.

Rule 03: The report definition must come last.
The last command in the stim file must be the specification of how often RNL should print a
report (using the def-report specification); syntax and examples:

report < period> < timel> < time2>

report 2 1 (report every 2 simulation steps at the end of interval 1; which
occur at t=2, 4, 6, etc.)

report 10 3 6 9 (report every 10 simulation steps at the end of intervals 3,6 and 9:
t=4, t=7, t=10, t=14, t-17, t=20 etc)

report 10 (report at the end of every simulation step)

Rule #4: How input signals are specified.
Signals are defined in one of the following ways:

nodename (states must be 1, h, u or x)

invec vectorname (states must be a numerical type:
decimal, octal (leading 0),
hexadecimal (Ox...) or binary (Ob...))

bitinvec vectorname (states can be any combination of 1,0,u and x; no spaces between the
elements)

followed by:
the period, and a number of combinations:

<state> <time>

If the period is *lr the specification relates to a one time event (the period is really infinity).

Syntax and example for a simple waveform definition for simple node:
node name <period> <statel> <timel> <state2> <time2> .....
node-namel 10 Ih 0 12 u 5 x 8

period is 10 simulation steps, signal h at t=0, I at t=2, u at t=5 and z at t=8;
signalchanges repeat themselves at t=10, 12, 15, 18, 20, 22, etc..

Syntax and examples for a numerical vector definition (no undefined states can be specified in

this case.q:

invec vectorname <period> < statel> < timel>

invec name 10 z 0 b01111 2 07 5 3 8

period is 10 simulation steps, vector is the hexadecimal "a at t=0, binary 1111 at t=2,
octal *7 at t=5 and a decimal 3" at t-8. Again, the pattern is repeated 10 simulation
steps later.

invec name 0 0a 0 15 5 017 9

The pattern is a single event: name is hexadecimal 'a" at t=0, a decimal "1Y at t 5; an
octal "17" at t-9. This pattern does not repeat itself!

Syntax and examples for a bitvector definition:
bitinvec <vector name> <period> <statel> ......

qbitinvec vectorname 20 0000 0 1111 5 uuuu 10 1rou 15
bitinvec vectorname 10 Oxix 0 uOOx 5

j UW/NW VLSI Release 3 2 06/01/85

It.1; :.:;' -:X- ._:



GEN-TIME ( I.VLSI) VLSI CAD Tools Manual GENTME ( I.VLSI)
.::...

Rule #5t Use of regular RNL commands allowed only with standard lisp syntax.
RNL commands can also be inserted in the same manner as node and vector stimulus; only
the standard rni syntax (with parentheses is allowed):

syntax:
command < period> < (rnicommandl)> < timel>.

Rule 06: Masking of input signals and commands.
Except for the time range command ALL gen ime commands are subject to mask commands,
with will blank out the impact of the next command line immediately following the mask com-
mand line. After processing this next command line the mask is reset to a default which is a
full enable. There are two mask commands:

" 'mask' and 'maskinv'

'mask' and 'maskinv' themselves are defined as having a period (a one time mask has a period
of '0') and only 1 enable and only I disable time.

syntax:
mask < period> < enabletime> < disable.time>
maskinv <period> < disable-time> < enable-time>

Example:
mask 0 10 20
node2 5 h 0 15 u l0 x 15

will blank out any activity from node2 before
time increment 10 and after time increment 20.

maskinv 0 10 20
node3 S hO 15 u 10x15 -.

will allow only node3 statements to be
effective before time increment 10 and
after time increment 20.

The commands scheduled for the time coinciding witb the enable time of the mask will be
effective, while the commands schedule for the time coinciding with the disable time will be
disregarded.

Example of a typical stimulus file:
Timing file for basic CRC Counter
Simulation time:

time-range 0 36
_7 ; Run the clock at all times:

-cl210hl.-. '""" ;Reset:

.-- rOhOil
*i ; The following sequence is designed to exercise all nodes!

in 0 10 h 2 112 h 201 26 h 28 1 32 h 34
; We will start reporting the unchanged nodes just before
; the last ff changes state, which is at time increment 32:
mask 0 32 36
command 1 (printf 'nodes unch.%S' n (unchanged-since 100)) 0

We report the state after every simulation step:
report 1 0

U.,. .V*UW/NW VLSI Release 3 3 06/01/85

...



GEN-TIME ( I.VLSI) VLSI CAD Tools Manual GENTIME ( I.VLSI)

USING FATIrBRNS PVl[NED USING GEN-TL.
The output file from gen time with the shell command:

gentime basename.stim bsenime.time

Within the regular RNL control file (basename.l) one should include:
(load basenametimF)

AUTHOR
Henriecus Koeman, John Fluke Mfg. Co., Inc.

DAGNOSICS
In case of an error in the inputfile gen_time will most likely print the first line number and
the line itself where the error was detected and then terminate prematurely.

BIU
Please let the author know.

*

,-I

UW/NW VLSI Release 3 4 06101/85

| . .

r-..~ ~ %.-.



LYRA(CAD) UN[X Programmer's Manuai LYRA(CAD)

NAME
lyra - Performs hierarchical layout rule check on caesar design.

SYNOPS
lyra [-va [-- output) [-p path] [-r ruleset] (-4 technology] rootCaesarFile,
or
Iyr -. [-t technology) [-r ruleaet]

D3SCIPTION
Lyra has two modes of operation: it can be invoked directly to perform a batch hierarchical
check of a caesar design, or from the Caesar (or Kic) layout editor to interactively check a

* * portion of the design currently being edited.

In batch mode, a hierarchical check of the caesar design rooted at rootCaetarFile is done. A
log, including a summary of errors is written to stdout, and a lyra file 'namely" is created for
every cell "nameca in which design rule violations are detected. The lyra files flag each
design rule violation with a bright splotch of paint on the error layer, and a caesar label iden-
tifying the type of violation. The lyra file for a cell "name.ca" contains the original caesar file
as a subcell, thus the caesar subedit command can be used to conveniently fix design rule vio-

* lations reported by Lyra. Obsolete lyra files are removed by Lyra when a cell checks on the
current run.

Lyra's violation messages have the fort:

-< LayersOrConstructs > < Type >.

Note that all violation messages begin with an exclamation mark ()'. LayersOrConstructs
gives the single character abbreviations for the layers involved in the violation. Circuit con-
structs such as transistors and buried contacts may also be indicated by short abbreviations
(e.g. tr for transistor; Be for buried contact). Type is given by one or two characters indicating
the type of error as follows:

s minimum spacing violation,

w minimum width violation,
pe= parallel edge spacing violation,
. = insufficient extension or enclosure,
p = polarity, e.g. Dif. doping doesn't match well in CMOS,
f - malformed circuit construct.

For example, a spacing violation between Polysilicon and Diffusion would look like this:

W as.

Note that Parallel Edge checks are less restrictive than the corresponding Width and Spacing
checks would be, since they ignore diagonal interactions.

"* - The following rulesets are currently supported at Berkeley:
:-. i- muegRK

Berkeley aMOS rules. Modified Mead & Conway rules. Buried contacts are supported;
Butting Contacts are disallowed. The Lyon Implant rules are used.

cmes-pwJPL
CMOS rules (p wel). An extension of the Mead and Conway nMOS rules to CMOS,
worked out by Carlo Sequin in conjunction with JPL.

3rd Berkeley Distribution 10/24/821

* -.-.. . .

-. * . . . .



LYRA(CAD) UNIX Programmer's Manual LYRA(CAD)

+" ""umosMC

Mad A Conway &MOS rules as described in 'Introduction to VLSI Systems by Mead
and Conway. Butting Contacts are allowed; buried contacts are not allowed.

cmes-wpw3
MOSIS 3 micron bulk cmi proem, (see below for details). This is the default ruleset
for technology cmos-pw.

cmm-Mlvl
MOSIS 3 microa bulk cmes precem, (see below for details).

GTE S micron isocms procem.

If the -r option is not given, Lyra chooses a ruleses based on the technology specified in the
rootCaesarFile. The correspondence between caesar technologies and default rudesets is
specified in cad/lib/iyraoDEPAULTS. If Lyra does not recognize the technology of the
rootCaesarFile, it uses the default rideset for ans.

In editor mode standard input and standard output are used to communicate with the layout
editor, no log is written to stdout!, and violations are flagged directly in the edit cell. The
caesar technology or ruJeset, if different from ases, must be specified explicitly on the com-
mand line, since Lyra does not have direct access to the caesar database. Note that interactive
checks are nonhierarchical and slow, thus it is a good idea to use this mode only to check
small pieces of a design; complete designs are best checked in batch mode.

The options described below may be specified in a .cadrc file or as command line options.
Lyra reads options from "cadlxadrc, 1.cadrc and the command line, in that order. If an
option is specified in more than one place, the later setting takes precedence. Capitalizing an
option on the command line, or giving the keyword .nset<option> in cadre causes the
option to be reset to its default value (e.g. 'lyra -W, resets any previous ruleset specification,

",.-.forcing the default to be used).
- (edit mode) Used by Caesar and 1ie. In this mode Lyra reads rectangles etc. from stan-

dard input and reports violations on standard output.

-9 < outputDir>
(output directory) Gives directory for lyra (-Jy) files. Defaults to current directory.

-p < path>
(search path for caesar flies) Path gives a colon (*.') separated sequence of directorys
to be searched in order for caesar files. The default search path is just the current
directory. As in caesar "cadllib/caesar is searched as a last resort.

-r < ruleset>

(design rule set) Gives ruleset to use. Rulesets are stored in cadllibllyra. A user can
supply his own ruleset by giving the full pathname on the -r option (see ruloc). If the
-r option is not specified, Lyra determines which ruleset to use from the technology
specified in the rootCaesarFile for the design.

< technoloy>
(caer technology) Used to specify caesar technology in editor mode, or to override the
technology given in the rootCassarFile. Lyra uses the caesar technology to choose a
default ruleset.

-v (verbose mode) Causes more detailed log information to be written to stdout. This

option is primarily for debugging.

-a (restart) If Lyra dies abnormally, it leavs a RESTART file in the output directory
which gives the cells which were completely checked. Lyra can then be restarted with
the -a option, to resume checking with the first (sub)cell not already checked. Note

U
3rd Berkeley Distribution 10/24/82 2

-,-,.,......,.... . •..................-..-...,.....-.-......,...............-....-.-.-..,...-,-.,... , -,,.-., ,..-



LYRA(CAD) UNIX Programmer's Manual LYRA(CAD)

that the restart option should only be used if the caesar database for the project has
not been changed since the time the original Lyra run was started.

DIAGNOCrlCS
CMOS-PW3 MOSIS 3 MICRON CMOS DESIGN RULES, V1.0

C s' contact-contact separation: 3u
C w contact width: 3u

"C2 r' mctal2 extension around via: 2.5u
metal extension around via: 2.5u

"C2 e9 via-via separation: 3u
OC2 w' via width: 3u
C/C2 s" via-cut separation: 3u

OD e" active area-active area separation: 4u
"D w' active area width: 4u
"Dn+ w" N+ active area width: 4u
"Dp+ w" P+ active area width: 4u
'Dw w°  P+ active area (not gate) width: 3u

N+ active area (not gate) width: 3u
"DIC2 s! if active area is not under via, via-active area

separation: 3u
"D1C2 x if active area is under a via, active area extension

around via: 3u
"D/p+ e N+ active area to P+ spacing: 2u
IM a' metal-metal separation: 4u
MM w' metal width: 3u
"MP/PMM2 e" step missing for metal2 step coverage
M2 s metal2-metaI2 separation: 5u
M2 w' metal2 width: 5u
M2/P st°  metal2/metal/poly width: lu

"M/PMM2 ie metal step width for metal2: 4u
"M/P/M2 st" poly-metal separation when under metal2 with no

overlap: 5u
Op " poly-poly separation: 3u
WPMC in extra .5 micron in direction of metal in poly-metal

contacts
"1N w9 poly (not gate) width: 3u
"P/C2 " if poly is not under via, via-poly separation: 3u
"PIC2 i" if poly is under a via, poly extension: 3u
P/D e" poly-active area separation: 2u

P/M/M2 st' poly-metal separation when under metal2 with no
overlap: 5u

P/PMM2 le poly step width for metal2: 3u
"T w Gate area width: 3u
"TiC s contact to gate separation: 3u
Tin+ s P+ extension around gate outside p-well: 3.5u

oTp+ s gate inside p-well to P+ (of ohmic contact)
separation: 3-3u

"VIA r via has obtuse corner
"Wp s p-well to p-well separation: 9u
"Wp w" p-well width: 3u
"Wp/n+Wn " N+ active area (ohmic contact) to p-well

3rd Berkeley Distribution 10/24/82

• , ..- .. % ,.; . . ,..2 ,- - . . - , - , - , - . . .- : .% .. ;....- ,r,;,. . . .,, .,. ... , -- . .--



-Ti

LYRA(CAD) UNIX Programmer's Manual LYRA(CAD)

separation: 7u
ce f" metal and (poly or active area) required under cuts

metal extension around cut: 2u
active area extension around cut: 2u
poly extension around cut: 2u

-pW/n+D e p-well extension around active area: 4u
'pW/p+D e' separation of p-well from P+ active area: 8u
"p+ s p+ to p+ separation: 3u
p+/D ' P+ extension around P+ active area: 2u
sc f, split ohmic contact must be 4 microns into P+ active

area and 4 microns into N+ active area
"tr f' malformed poly or active area abuttment: 3u extension
"tr po polarity: P+ implanted transistor in p-well

polarity: N+ implanted transistor outside p-well

CMOS-PW3 MOSIS 3 MICRON CMOS DESIGN RULES, V1.1

Same as 1.0 with the following exceptions:

modified rules:
"C2 fr metal2 extension around via: 2u

metal extension around via: 2u
"M2/P st" metal2/metal/poly width: 3u
*M/PMM2 ' metal step width for metal2: 3u
'MP/M2 st' poly-metal separation when under metal2 with no

overlap: 3u
P/C2 e if poly is not under via, via-poly separation: 4u
PIC2 i' if poly is under a via, poly extension: 4u

"P/M/M2 st" poly-metal separation when under metal2 with no
overlap: 3u

"P/PMM2 1 poly step width for metal2: 3u

new rule:
*D W' Active Area transistor abuttment width: 4u

FILES
cad/bin/lyra - executable lyra.

"cad/lib/lyra -- rulesets (in symbolic and executable form).
cad/lib/lyra/DEFAULTS -- gives default rulesets for caesar technologies.

SEE ALSO
Rulec (CAD)
Caesar (CAD)
KIC (CAD)
Cif2ca (CAD)
Cifplot (CAD)

AUTHOR
uW Michael Arnold.

U 3rd Berkeley Distribution 10/24/82 4

.- .. .- , , " , . , , -*- :--• ,, .--** . . • • . . . . . . . . . .. • • . . .. .- . - . -. . . i. . .. . .



MEXNODES(1.VLSI) VLSI CAD Tools Manual MEXNODES( 1ALSI)

NAME
meinodes - integrate intermediate nodes extracted by mextra with the original caesar design.

SYNOPSIS
mexnoe [optaons) basename

DESCRIPTION
Mezsodes is a shell script that uses cif2ca and caesar to generate a Caesar-format file. This file
allows the user to view the intermediate nodes named by mextra on the original design. Mex-
nodes can be helpful when a simulation tool reports errors at a node not named by the user, as
such errors are sometimes hard to locate. The output file created by mexnodes is named
*uxbasename.xa. This file can be then viewed using caesar in order to find a given node.

The options are as follows:

-t technology
Technology is one of nmos, isocmos, or cmos-pw. Default is nmos.

-I lambda
Lambda specifies the centimicrons to lambda correspondence of the design. Default is
200 centimicrons per lambda.

FILES
basename ca
mxbaseame .ca
basename nodes
basename cif

SEE ALSO
caesar(CADI), cif2ca(CAD1), mextra(CAD1)

AUTHOR

Terry J. Ligocki

RUGS

UWINW VLSI Release 2 1 61/84

_-7



MEXTRA(CAD1) UNIX Programmer's Manual MEXrRA(CADI)

NAME
mextra - Manhattan circuit extractor for VLSI simulation

SYNOPSIS
mextra [-&] [-e scale] [-o] basename

DESCRIPTION
Meu ra will read the file basename clf and create a circuit description. From this circuit
description various electrical checks can be done on your circuit. The circuit description is
directly compatible with esim, powest, and erc. There are translation programs to convert mex-
tra output to acceptable spice input (see sim2spice, pspice and spcpp).

Mextra creates four new files, basename.og, basenameal, basename.slm and basename.nodes.
After mextra finishes it is a good idea to read the Jog file. This contains general information
about the extraction. It has a count of the number of transistors and the number of nodes,
and it contains messages about possible errors. The al file is a list of aliases which can be used
by esim. The nodes file is a list of node names and their CIF locations listed in CIF format. It
can be read by cafplor to make a plot showing the circuit with the named nodes superimposed.
The form of this cifplot command is:

dlfplot basename.nodu basename.df

The .alm file is the circuit description for use with simulation programs and electrical rule
checkers. The format of the .sim file is described in the man page simfUe(S).

Nma

Mewria uses the CIF label construct to implement node names and attributes. The form of the
CIF label command is as follows:

94 name z y [layer];
This command attaches the label to the mask geometry on the specified layer crossing the
point (x, y). If no layer is present then any geometry crossing the point is given the label

Mextra interprets these labels as node names. These names are used to describe the -xtracted
circuit. When no name is given to a node, a number is assigned to the node. A label may
contain any ASCII character except space, tab, newline, double quote, comma, semi-colon,
and parenthesis. To avoid conflict with extractor generated names, names should not be
numbers or end in 'On' where n is a number.

A problem arises when two nodes are given the same name although they are not connected
electrically. Sometimes we want these nodes to have the same names, other times we don't.
This frequently happens when a name is specified in a cell which is repeated many times. For
instance, if we define a shift register cell with the input marked 'SR.in' then when we create
an 8 bit shift register we could have 8 nodes names 'SR.in'. If this happens it would appear as
though all 8 of the shift register cells were shorted together. To resolve this the extractor
recognizes three different types of names: local, global, and unspecified. Any time a local
name appears on more than one node it is appended with a unique suffix of the form 'in'
where n is a number. The numbers are assigned in scanline order and starting at 0. In the
shift register example, the names would be 'SR.in#O' through 'SR.in#7'. Global names do not
have suffixes appended to them. Thus unconnected nodes with global names will appear con-
nected after extraction. (The -g causes the extractor to append unique suffixes to uncon-
nected nodes with the same global name.) Names are made local by ending them with a sharp
sign, ',#'. Names are global if they end with an exclamation mark, . These terminating char-
acters are not considered part of the name, however. Names which do not end with these
characters are considered unspecified. Unspecified names are treated similar to locals. Multi-
pie occurrences are appended with unique suffixes. By convention, unspecified names signify
the designer's intention that this name is a local name, but is connected to only one node. It

4th Berkeley Distribution 6/1184

...................... ... ........... ......... ... ..



MEXTRA ( CADI) UNIX Programmer's Manual MEXTRA (CADI )

is illegal to have a name that is declared two different types. The extractor will complain if
this is so and make the name local.

It makes no difference to the extractor if the same name is attached to the same node several
times. However, if more than one name is given to a node then the extractor must choose
which name it will use. Whenever two names are given to the same node the extractor will
assign the name with the highest type priority, global being the highest, unspecified next. local
lowest. If the names are the same type then the extractor takes the shortest name. At the
end of the .1m8 file the extractor lists nodes with more than one name attached. These lines
start with an equal sign and are readable by esim so that it will understand these aliases.

Attributes

In addition to naming nodes meura allows you to attach attributes to nodes. There are two
types of attributes, node attributes, and transistor attributes. A node attribute is attached to a
node using the CIF 94 construct, in the same way that a node name is attached. The node
attribute must end in an at-sign, 'V'. More than one attribute may be attached to a node.
Meztra does not interpret these attributes other than to eliminate duplicates. For each attri-
bute attached to a node there appears a line in the Am file in the following form:

A node attribute

Node is the node name, and attribute is the attribute attached to that node with the at-sip
removed.
Transistor attributes can be attached to the gate, source, or drain of a transistor. Transistor

attributes must end in a dollar sign, '. To attach an attribute to a transistor gate the label
must be placed inside the transistor gate region. To attach an attribute to a source or drain of
a transistor the label must be placed on the source or drain edge of a transistor. Transistor
attributes are recorded in the transistor record in the .do file.

Trautoes

For each transistor found by the exractor a line is added to the lm file. The form of the line
is:

sype gate source drain length width x y
g-atribues s=attributes d=attributes

Type can be one of three characters, '' for enhancement, 'd' for depletion, or 'a' for unusual
implant. ( Unusual implant refers to transistors which are only partially in an implanted area.
It will be necessary to write a filter to replace these transistors with the appropriate model in
terms of enhacement and depletion transistors.) Gate, source, and drain are the gate, source,
and drain nodes of the transistors. Length and width are the channel length and width in CIF
units. X and y are the z and y coordinates of the bottom left corner of the transistor. Attri.
butes is a comma seperated list of attributes. If no attribute is present for the gate, source, or
drain, the S-, a-, or d- fields may be omitted.

The extractor guesses the length and width of a transistor by knowing the area, perimeter,
and length of diffusion terminals. For rectangular transistors and butting transistors the
reported length and width is accurate. For transistors with corners or for unusually shaped
transistors the length and width is not as accurate.

It is possible to design a transistor with three or more diffusion terminals. The extractor con-
siders these asfwuy transistors. They are entered in the Ai file in the form:

ftype gate model node2 ... nodeN zoc

4th Berkeley Distribution 6/1/84 2

=o -,".-* *~.. . . . . . . . . . . . . -



MEXTRA(CADI) UNIX Programmer's Manual MEXTRA(CADI)

The 'r is followed by the type : 'e', 'd' or 'a'. Nodel ... nodeN are the diffusion terminal nodes.
As with any circuit with 'a' transistors, any circuit with 'T' transistors must be run through a
filter replacing each of the funny transistors with the appropriate model in terms of enhance-
ment and depletion transistors.

Capacitance

The aim file also has information about capacitance in the circuit. The lines containing capa-
citance information are of the form:

C nodel node2 cap-value
cap-value is the capacitance betweens a node and substrate is in fento-farads. Capacitance
values below a certain threshold are not reported. The default threshold is 50 femto-farads.

Transistor capacitances are not included since most of the tools that work on the ,im file cal-
culate them from the width and length information.

The capacitance for each layer is calculated separately. The reported node capacitance is the
total of the layer capacitances of the node. The layer capacitance is calculated by taking the
area of a node on that layer and multiplying it by a constant. This is added to the product of
the perimeter and a constant. The default constants are given below. Area constants are in
femto-farads per square micron. Perimeter constants are femto-farads per micron.

Layer Area Perimeter
metal 0.03 0.0
metal2 0.015 0.0
poly 05 0.0
diff(n) 0.10 0.1
diff(p) 0.10 0.1
poly/diff 0.40 OD

Poly/diffusion capacitance is calculated similar to layer capacitance. The area is multiplied by
constant and this is added to the perimeter multiplied by a constant. Poly/diffusion capaci-
tance is not threshold, however.

The - option supresses the calculation of capacitance, and instead, gives for each node in the
circuit the area and perimeter of that node on the diffusion, poly, and metal layers. The lines
containing this information look like this:

L node metao2Area metal2Perim metalArea metalPerim polyArea polyPerim diffArea diffPerim
diff pArea diffpPerim

Node is the node name. x y is the position of a point on the node. Currently this is always '0
0'. metal2Area through diffpPerim are the area and perimeter of the metal2, metal, poly,
diffusion(n), and diffusion(p) layers in user defined units. (In addition the - option causes
transistors with only one terminal to be recorded in the .im file as a transistor with source
connected to drain.)

If the network is being extracted from the cif file we suggest the node capacitance not be com-
puted by mextra. Rather the-e option should be used. This puts the burden of computing node
capcitance on the programs presim and sim2spice2. We feel this is advantageous because
presim and sim2spice2 are filter programs linked directly to the type of simulation that is to be
done. This will hopefully reduce some of the confusion associated with calibration.

Changing Default Values

As part of its start up procedure mextra reads two files: /usr/vlsibin/.eadrec and then a search
U ]J for the first .cadre from the current directory (.) to the the user's home directory is made.

Mextra reads these files to set up constants to be changed without recompiling. The keywords
for mextra are contained within the mextra environment of the .cadrc file. Declaration of

4th Berkeley Distribution 6/1/84 3



MEXTRA(CADl) UNIX Programmer's Manual MEXTRA(CAD1)

environments in the .cadre file are described in cadrc(S). .2
By default, mezra reports locations in CIF coordinates. A more convenient form of units may
be specified either in the cadre file or on the command lie. The form of the line in the
.cadre file is:

Dalt@ scale

where scale is in centi-microns. The user may type in the chosen value for the scale directly.

To set units on the command line use the -a option.

motra -a scale basename

The parameters used to compute node capacitance may be changed by including the following
commands in your .cadre file.

prleaetecap layer value

% value is atto-farads per square micron for area, and atto-farads per micron for perimeter.
layer may be 'poly'. 'diff, "metal, wmetair, or "polyidiff*.

To set the capacitor values to those given in Mead and Conway the following lines would
appear in the .cadre file:

areatocap poly 40
areatocap duff 100
areatocap metal 30
areatocap poly/diff 400
perimetertocap poly 0
perimetertocap diff 0
perimetertocap duff 0
perimetertocap metal 0
perimetertocap poly/dift 0

The threshold for reporting capacitance may be set in the .cadre file with the following line.

captbreshold value

A negative value sets the threshold to infinity.

Mextra knows of two technologies, nMOS and cMOS p-well. NMOS is assumed by default.
To set the technology to cMOS p-well, include the following line in your .cadrc file:

tech cmse-pw
FILES

-/.cadrc
basexanv.cif
basenam al
basexaanelog

p basenari.nodes
basenaane a

* SEE ALSO
powest(1.vlsi), pspice(1si), spcpp(1.visi), sim2spice(1.vlsi), spice(1.vlsi), drc(1.vlsi), erc(1.vLsi,)
cacsar(cad 1),
cadrc(cadS). simfile(l1si).

AUTHOR
Dan Fitzpatrick (UCD)

4th Berkeley Distribution 6/1/84 4i



MEXTRA(CAD1) UNIX Programmer's Manual MEXTRA(CADI)

MODIFICATIONS
(UW/NW VLSI Consortium, University of Washington)

BUGS
Accepts manhattan simple CIF only, use cffplot -O to convert complicated CIF. For unusu-
ally shaped transistors the UW/NW modified mexra should be used, otherwise values will be
quite inaccurate. The modified me.ura will either yield accurate values or a 'reasonable' guess,

depending on the complexity of the unusual transistor. The modified mextra will tell you

when the output values are only best estimates. The length/width ratio for unusually shaped
transistors may be inaccurate. This is true for snake transistors. Attributes for funny transis-
tors are not recorded. Node attributes are ignored unless the -e switch is present.

:5-"

4th Berkeley Distribution 6/11/84 5

4e-: .:-,--=':. . _, - -. ' ..- X -..- ....-....... ,.......:.:.-.-...-.....:. . ....... , ' ;., ,-..--.- .- .-. '



MTP( .VLSI) VLSI CAD Tools Manual MTP( I.VLSI)

NAME
mtp - Multiple Time-series Plot for simulator output

SYNOPSIS
mtp behavior file directive-fei plot-file

DESCRIPTION
Mp plots the output of ri and spice simulations on the Printronix line printer. Behavior-file
is the rat or spice output file, directive-file is a specification file for the plot, and ploi-file is
an output file to contain the plot suitable for printing on the Printronix line printer.

The use of mup involves the following steps:

1. Generate a behavior file.

If you are using rni, the directive

openplot "behavior file"

will cause the changes to all traced nodes to be written to behavior-filG in addition to
being written to the terminal. Quotes are necessary if the file name has my punctua-
tion in it.

The RNL directive

closeplot

will terminate the behavior file. If the entire rod session is to be recorded closeplot is
not required, as the file will be terminated when rxi exits.

If you are using spice, a behavior file may be specified as the third positional parame-
ter of the spice command. Behavior records will be put on this file for all nodes
specified on the Spice PLOT directive.

2. Generate a plot file from the behavior file using .up.

The plot is sent to the Printronix printer using the Unix command

lpr -1 plot-file

The contents of behavior-file are interpreted with the help of directive-file. For the basic pur-
pose of plotting the output of rnl or spice, only a few directives need be supplied:

1. start time
Tells mtp when to start plotting. If not supplied time defaults to 0. Data is skipped on
the behavior file until an event is found whose time is greater than or equal to the
start time.

2. stop time
Tells mtp when to stop plotting. A stop value must be specified. If the stop time is
greater than the time of the last event on the behavior file, the plot will be concluded
with the last event.

3. scale time
Tells mup the number of time units per inch. The default value is 1000.0. Because the
time unit used by Pni for behavior file output is 1.0 nanosecond, this value will pro.
duce plots of rot output having a scale of 1.0 microsecond per inch.

4. logical signal
This is used primarily for plotting rnt output. To select signals A, B and C for plot-
ting in logical format the directives would be

logical A
logical B
logical C

UW/NW VLSI Release 2 4/30/84

S- .,-,......



..

MTP (L.VLSI) VLSI CAD Tools Manual MTP(I.VLSI)

5. analog signal heigtu "
Analog format is required when dealing with spice output because spice produces
floating point values rather than logic levels. The height in inches of each trace must
be specified. To select node voltages for nodes 1, 2 and 3 for plotting in analog format
the necesary directives might be

analog V(i) 0.5
analog V(2) 0.5
analog V(3) 0-5

The order of selection directives in the file determines the order of the traces on the plot.
The first signal selected is plotted closest to the time axis. A maximum of 20 signals may be
selected on a given plot.

Spaces are used to separate the fields of a directive line. Blank lines or lines starting with "
are ignored. Directives are case insensitive except for signal names.

EXAMPLE
The following example uses mup to plot the behavior of a 10 bit counter, cntrl0.net, shown
here in netlist format:

net file for 10-bit counter

half adder made from gates
(macro half adder (a b s c)

(local hl h2 h3)
(nand (hi 2 16) a b)
(nand (h2 2 16) a hl)
(nand (h3 2 16) b hl)
(nand (s 2 16) h2 h3)
(invert c hl)

one cell of a counter
(macro cell (in out Cin Cout)

(local cI c2 c3)
(invert cl in)
(trans phil cl c2)
(invert 3 c2)
(half -adder 03 Cin out Cout)

(trans phi2 out in)

declare global node names

(node count c in out phil phi2)

; carry-in to first significant bit controls counting action
(connect count c.0)

generate the counter
(repeat i 110

(capacitance out.i 1.234)
(cell in.i out.i c.(1- i) ci)

UW/NW VLSI Release 2 2 4/30/84

... .. .. : ... .... ". .," .. - , . -. . ,. ,.. . ,,_ -. .. .L .',_, . .... ..... '.--_, . ,:'.



MTP( 1.VLSI) VLSI CAD Tools Manual MTP( 1.VLSI)

The nil control Atle, catrlO.l, is as follows:

RNL initialization file for 10 bit ripple-carry counter

(load ffuwstdlv)
(load 'uwsiml.1)

(read-network 'cntrlY)

(setq report-form. nil) This turns off the report generator

V (setq incr 1000)

bind symbols to node names

(chfiag '(phil phi2 out.10 out.9 outi8 out.7 out.6
out.i outA out.3 out2 out.1))

(defun mnit (dummy)

(I '(count in.l. in2 in.3 in.4 in.S
in A in.? in A in.9 in.10))

(I '(phi2))
(h '(Phil))

(stop incr)
(I '(Phil))
(step incr)

(x '(in.1 in.2 in.3 mA i
in.6 in.? in.8 in.9 in.10))

(h '(phi2))

(I '(phi2))
(step incr)

(h '(count))

(wr-repont)

* 'done

(defvec '(bit bout out.l0 out.9 out.8 out.? out A
outS5 out.4 out.3 out2 out.l))

li
(defvec '(dec dout out.10 out.9 out.8 out.? aut.6

out.S out.4 out3 out.2 out.l))

UUW/NW VLSI Release 2 3 4/30/84



MTP( I.VLSI) VLSI CAD Tools Manual MTP ( .VLSI)

(def-report '('10 bit counter current state" newline
count (vec bout) (vec dout)))

Generate the behavior for the counter using rnl

netlist cntrIOnet cntrl0.sim
presim cntrisim cntrl0
ml cntriO1

init # initialize the counter

openpiot "cntrl0.evl" 0 open the behavior file

. (.evl stands for event list)

c 30 # run 30 clocks

exit 0P exit ml

Generate the plot.

mtp cntrl0.evl cntrl0.mtp cntrl0.plt

Ipr catrlO.plt

The file cntrlO.mfp could contain the following:

start 0.0
stop 20000.0
scale 1000.0
logical phil

- logical phi2
logical out.1

S- logical out.2
logical out3
logical out.4
logical out.5

The star and Kale directives are not necessary but are included for the purpose of illustra-
tion. Although not required, these directives typically preceed the signal selection directives

"-- in the file.

When imp runs it lists the contents of the directive file on the terminal and reports progress
with the following messages:

Previous output cntrlO.plt removed
Select and preprocess input data

-. Sort preprocessed events
Generate the plot
Rasterize for the Printronix
mtp complete, plot file is cntrlO.pit

UW/NW VLSI Release 2 4 4/30/84

-" . , . .'.. . . f t.."ff - f f . * -. ,. " " .* " ' . . "- ~. .. " * . . * . ."- -' . *- , ",, . "".ft..4.* ', ft - °''- " ,



MTP( l.VLS[) VLSI CAD Tools Manual NITP( l.VLSI)

The *Rasterize for the Printronix" message marks the beginning of the longest step in the pro-
ces which typically takes about a minute under moderate system loads.

Mip creates scratch files named fors.], f ort2, f orIS. fort.4, and fort.7. If any of these files are
present when mip is invoked it will exit with an error message. This can happen if mip is
aborted before having time go clean up the scratch files. If this happens the scratch files can
be cleaned up with the Unix command

rm fort 4123471

SEZ ALO
rnl(1.vlsa) spice(1.vlsi),
User's Guide to AML VLSI Dodgen Tools Reference Manual, UW/NW VLSI Consortium,
University of Washington, (Christopher Terman, MIT Laboratory for Computer Science).

SPICE User's Guide. VLSI Deodge Tooks Refercence Mdanua, UW/NW VLSI Consortium,
University of Washington, (A. Vladimirescu et at., 15 Oct. 1980)

AUTHOR
William Beckett (UW)

UWN LIRlas /08



MULT ( 1.VLSI) VLSI CAD Tools Manual MULT (LVL-SI)

NAM
mult - generate a cmos multiplier layout (version 1.0).

SYNOPSIS
malt [aptionsJ caesnme

DESCRIPTION
Mutt is a module generation program for static cmos multiplier circuits. The layout is pro-
duced in 'caesar'format. Mada requires a number of caesar cells with names of the form
multeca to exist in directory Jca. These should be copied from
SUW_VLSITOOLS/lib/generators/mult prior to running awl:. The generated layout is output
in directory Jca in caesar cells with names of the form 'caesarname..ca. Muls is a cft-based
program and therefore also produces *.bd fiIls 'Caesaramew may not begin with the string
mule.

The options are as follows:

-gMakes the left side horizontal bus ground. This is the default.
-a inbits

Sets the number of bits in the multiplicand operand. Mhits must be in the range 3 to
32. The default is 3.

9 -a ablta
Sets the number of bits in the multiplier operand. Nbirs must be in the range 3 to 32.
The default is 3.

-p P _string
labels the propduct output bits with labels fP-stringo1 , ?string?', "P-string2", etc.
with "P stringe' attached to the lsb. These labels appear on the right side and the bot-
ton silde of the layout. The default is 'p'.

-s Makes the number representation signed (two's complement). This is the default.
-0 Makes the number representation unsigned.
-, Makes the left side horizontal bus Vdd.
-Z X-striag

labels the multiplicand input bits with labels 'X -stringO', WX stringi', *X string2", etc.
with 'X stringG' attached to the lsb. These labels appear on the top side of the layout.
The default is 'z*.

-Y Yjtrisg
labels the multiplier input bits with labels 'Y -stringO', 'V stringi', "Y string2o, etc.
with "Y -stringO' attached to the lsb. These labels appear on the left side of the lay-
out. The default is y

FILES
Jcalcatsarnameeoca
Jca/caesarnamgeo.bd

* Jca/mutexca

* SEE ALSO

caesar(CADl), cfi(5.visi)

* AUTHORSI
Wayne E. Winder

3UW/NW VLSI Release 2 1 611/94



"o .q

NETLIST(1.VLSI) VLSI CAD Tools Manual NETLIST( I.VLSI)

NAME
netlist - a simple network description language for VLSI circuits

SYNOPSIS
nednt Infite [ousfleJ [-.-1 [-Uechl [-w wis [-s nj [-d nmI [--e nm] [-4 nm] [-I npmJ [-p n~m

DESCRIPTION
Netlist requires an input file with any/all extensions on the command line. An optional output
file can be specified. Additional options are described below;

-, Uses old input format. Size specifications are taken to be length/width rather than
width/length.

-ttech Uses tech in the technology portion of the units/tech line at the beginning of the
simulation file produced (Default is amos).

-units Sets the number of centi-microns per lambda to units (Default is 250). Warming:
The *unite set by this option appear in the comment line of the sim file. This
value is not used by PRESIM and does not influence an RNL simulation.

-on Uses number n as initializer for internal node names; useful when you want to
merge the results of separate nerlist runs.

-d n, n Sets the default width to n and length to m for depletion devices. The defaults are
n=8 and m=2.

-en, n Similar to -d except for enhancement devices. The defaults are n=2 and m=2.

-In, X Similar to -d except for intrinsic devices. The defaults are n=2 and m=2.
".- -In, X Similar to -d except for low-power devices. The defaults are n=2 and m=2.

* -pn, n Similar to -4 except for p-channel devices. The defaults are n=2 and m-2.

In addition, if node alias records (= nodel node2 ...) are declared using "connect' (See nerlist
-._. reference documents) they appear in a file with the name 'basename.al'. The basename is the

input file name minus its last extension.

Netist is a macro-based language for describing networks of sized transistors. Names in netis:
refer to nodes, which presumably get interconnected by the user through transistors. Macros
for describing transistors can be found in the NETLIST User's Guide. In addition to transistor
macros nelist provides macros that allow the user to set node capacitance, specific node delays
(in tenths of nanoseconds), and transistor threshold voltages. The user may also define his
own macros.

The load command uses the environment variable RNLPATH (default
.:$UW VLSITOOLS/ib/rn). See the NETLIST User's Guide for details.

SEE ALSO
presim(1.vlsi), rnl(l.vlsi),

NETLIST User's Guide, VLSI Design Tools Reference Manual, UW/NW VLSI Consortium,
University of Washington,

AUTHOR
Christopher Terman (MIT)

U Ve

5UW/NW VLSI Release 2 1 4/30/8A

.- • '.." . .. ., -. ' .. ', ' .'. ..... -.- , - -,...... , '. .. .."..-.. . '-'-... .



PADS( l.VLSI) VLSI CAD Tools Manual PADS( 1.VLSI)

--' NAMENAM pads - generate a cmos padframe layout (version 1.0)

SYNOPSIS
pads caasarn~ < framWejpec

DESCRIPTION
pads is a module generation program for a MOSIS 3 micron cmos padframe layout. This gen-
erator uses leaf cells derived from the MIT pads received from MOSIS. The leaf cells and the
layout that is produced are in "caesar" format. Pads looks for caesar leaf cells with names of
the form pad.ca in the directory Jca. These should be copied from
SUW VLSI TOOLS/lib/generatorstpads prior to running pads. Pads also reads in a framespec
file from the home directory (not Jca). The framespec file definition is provided in the text
that follows. The generated layout cells (composition cells) appear in directory ./ca with
names caesarnameeca. Pads is a cfl-based program and therefore also produces ..bd files.
"Caesarname may not begin with the string "pad'.

There are no options.

FRAME._SPEC
The frame specification is a text file made up of one frame specifier followed by several pad
specifiers. These records are terminated with ';' and may cross line boundaries. Individual
fields within records should not cross line boundaries. The syntax is 'c-like'; comments may be
placed anywhere with the /* ... */ convention.

The frame specifier is made up of a type specifier followed by an optional connection layer
specifier. The type specifier is one of C28_46x34, C40 46x68, C4069x68, C6469z68,
C64_79x92, or C84_79x92 (the first number indicates the number of pins on the frame, the
second and third numbers give the x and y dimensicns of the entire frame in hundreds of
microns). The connection layer specifier indicates what material connects the individual pad
circuitry to the interior of the chip (across the quard ring). This specifier may be METAL2
or POLY. Default is POLY.

The pad specifiers are used to determine the type of circuitry to place on specific pad sites.
Pad specifiers are made up of pin number, pad type, and optional label and connection
specifiers.

The pin number is an integer between I and the number of pins for the frame specified (see
above). For the 28 pin frame, pin number 1 is in the middle of the right side of the frame.
For the 40 and 64 pin frames, pin number 1 is immediately above the middle of the right side
of the frame. For the 84 pin frame, pin number 1 is the rightmost pin on the top of the
frame. Pin numbering procedes counterclockwise in all cases.

The pad type is one of padlvdd (power), padlgnd (ground), padlin (input), padlout (output),
padIttl (ttl output), padits (tri state output), padibin (buffered input), padibit (buffered ttl
input) or padlsp (frame spacer - never required).

The optional label specifiers are of the form 'BP = label', 'Li = label', 'L2 = label' and 'L3
label'. BP, LI, L2 and L3 indicate where on the pad circuitry to place the label; on the bond-
ing pad, on the leftmost connection on the bottom of the pad circuitry (when viewed with
bonding pad on top), second from left and third from left, respectively. 'Labcl' is any string
beginning with a letter and containing only non-special characters. Special characters include
'=', ';' and ''. Special characters can be included in strings by placing double quotes arcund
the string and preceding the special character with the backslash character. For details of
what connection connects to what portion of the pad circuitry, view the appropriate circuit
from padleca using caesar. The connections should be annotated with local labels to avoid
ambiguity. Not all connections appear on all pads.

UW/NW VLSI Release 2 1 4/16/8517 . . .

. . . . . . . . . . . . . .. . . . . . . . .



PADS(1.VLSI) VLSI CAD Tools Manual PADS( 1.VLSI)

The optional connection specifier indicates which connection to the interior is to receive a
contact, after crossing the guard ring. This specifier is of the form 'CN = layer', where N is 1,
2 or 3 and is identified as above. 'Layer' is one of METAL, POLY, or METAL2. Default is
METAL. If the layer is the same as the input connection material (specified in the first record),
no contact is placed. If different, a contact is placed. POLY may not be routed to METAL2
and vice-versa.

RESTRICTIONS
Pins may not be assigned more than once. Only those pins required need be assigned.

In ceratin corners of certain frames, tristate pad connections do not cross the quard ring.

In the 28, 40, and 64 pin frames, pin I should be vdd or blank. In the 84 pin frame, pin 10
should be vdd or blank.

Each frame must include at least one VDD pad and one Ground pad. These pads may only
connect to the interior with METAL.

FILES
/c a/ca esarnaneoxa
Jca/caesarname..bd
Ica/pad.oza
SUWVLSITOOLS/src/examples/pads/input

(for a framespec example)
SEE ALSO

cdi(5.vlsi)

AUTHORS
Wayne E. Winder

IJW/NW VLSI Release 2 2 4/16/85



PEG(CADI) UNIX Programmer's Manual PEG(CADI)

NAM
peg - finite state machine compiler

SYNOPSIS
peg[(-a][]me]

DESCRIPTION
Peg (PLA Equation Generator) is a finite state machine compiler. It translates a high level
language description of a finite state machine into the logic equations needed to implement
the state machine design. Pea uses the Moore model for finite state machines, in which out-
puts are strictly a function of the current state. Input is read from the named file or from
stdin if no file is specified.

A set of equations is generated on standard output. The equations are in the eqn format used
by eqntot. Output from peg may be piped directly to mkpla or tpla thus:

peg Infile I eqntott I mkpla -i -o -y a -foutfile
peg LitiLe I eqntott I tpla -c -s Bcis -I -0 -o outfile

Either of these command lines generates a PLA implementation of the finite state machine in
the file owfilexif. In the above command line for mkpla, n must be replaced by the integer
number of state bits generated for the fsm by peg.
The PLA will have clocked, dynamic latches on all inputs and outputs. From left to right, the
PLA inputs and outputs are the fan inputs, fam state inputs, hut state outputs, and fsm out-
puts. The mkpla result will feed back a state bits from the PLA outputs to the PLA inputs;
however, if tpla is used then the feedback lines must be manually added to the resulting cir-
cuit.

quo Peg options have the following meanings.

-t Generate a truth table for the fsm in the file pegiummary.

-s Print summary information in the file pegiummary.

PROGRAM STRUCTURE
A peg program is composed of a list of input signal names, a list of output signal names, and a
list of state descriptions, in that order. The input and output lists are optional.

Inputs

An input signal list consists of the keyword INPUTS and a list of fsm input signal names, ter-
minated with a semicolon. Every input list must have at least one input. If the fsm has no
inputs, this statement is omitted. PLA inputs will have the left-to-right ordering specified in
the INPUTS list.

Outputs
A list of output signal names begins with the keyword OUTPUTS and is terminated with a
semicolon. PLA outputs will have the ordering specified in the OUTPUTS list.

+II State Lidst
The remainder of a peg program consists of a list of state definitions. A state definition has
the form

,state-name I [ ASSERT uignai-list :1 [control ;
There is at most one ASSERT statement per state definition. Asserted output signals are set
to I. Signals that are not asserted have value 0.7.
There is at most one control statement per state definition. Control may be one of

IF ( NOT I input THEN state-name [ ELSE state-name ]

3rd Berkeley Distribution 10/18/82 1

V. 
,- V



PEG (CADI) UNIX Programmer's Manual PEG(CADI)

GOTO state-nane

CASE (inpw-signal4ist) selectors ENDCASE [defaidt]

Each case selector specifies the next-state for a particular set of values of the CASE input sig-
nals. Case selectors are lines of the form

(0 III ? ) + => state-name

IU no control is specified- by omitting the ELSE clause from an IF, by specifying a CASE with
no default, or by omitting control information entirely- nezi state defaults to the next sequen-
tial state on the state list. The default next state is undefined for the last state in the pro-
gram. The special state name LOOP specifies that the next state is the same as the current
state.

Cmmseets
Comments may appear at any location in a peg program. They begin with a double dash, -,

and terminate at the end of the line on which they appear.

Rmt Loe
There are two ways of handling fsm initialization. If the keyword RESET appears as one of
the input signals, then the fsm will jump to the first state on the state list when the signal
RESET is asserted high. Alternatively, the user may force a jump to the first state on the state
list by adding logic to the PLA state outputs to pull all of the state output lines low when a
reset is desired.

, .- Esamlel

The following peg program illustrates a variety of features:

--Decode inputs a, b, and c into

--0, 1, 2, 3, or "other'.

INPUTS: RESET Select a b c;

OUTPUTS:
FoundO Foundl Found2 Found3 FoundOther;

Start: --This is the reset state
IF NOT Select THEN LOOP;

; CASE (a b c) -Second state
0 0 0=> Zero;
0 0 1> One;
0 10 => Two;
0 11 => Three;

ENDCASE=> Other;

Zero: ASSERT FoundO; GOTO Start;

* One: ASSERT Foundl; GOTO Start;

Two: ASSERT Found2; GOTO Start;

Three: ASSERT Found3; GOTO Start;

Other: ASSERT FoundOther; GOTO Start;

SEE ALSO
mkpla(CADI), tpIgCADI), eqmtott(CADI)
Gordon Hamachi, Designing Finite State Machines with Peg

3rd Berkeley Distribution 10/18/82 2



PEG (CAD1) UNIX Programmer's Manual PEG(CADI)

FILES
pcg.summary summary information file

AUTHOR
Gordon Hamachi

BUGS
The parser quits after the first error is found.

3rd Berkeley Distribution 10/ 18/82 3

. .



PLA2NET(1.VLSI) VLSI CAD Tools Manual PLA2NET(1.VLSI)

NAME
pla2net - generate netlist macro from truth table of pis

SYNOPSIS
pla3. basexaw

DESCRIPTION
pla2mes generates a netlist macro using the truth table definition for a pin as an input. This
truth table may have been obtained using PEG and EQNTOTT. pia2 e expects that a file
named 'bmummam.t' is in the current directory; if this is not the case an error message will be
generated. The output of pla2uet will be stored in a file named 'basenawn.aet'.

The macro defined in the 'buemmnet' file looks as follows:

(macro basename (output input) where:

the basename is identical to the basename in the commmand line of pla2net;

* output is an outputvector, numbered from left-to-right as in the truth table and a lay-
out generated with tpla starting with output.1;

--. input is an inputvector, number from left-to-right as in the truth table and a lay-out
generated with tpla starting with input.l.

Note: When designing pla's for sequential state machines with PEG, the innermost inputs
and outputs of the pia will be the least significant bit. The state register inputs and
outputs must be wired accordingly (mirror and shift numbering of input vector in the
netlist description for the top level sequential state machine, which includes the
feedback register, is necessary).

INPUT FILB

bmename.tt

OUTPUT FILE
basename.net

SEE ALSO
Manual entries for PEG, EQNTOTT.

AUTHOR
Henriecus Koeman, John Fluke Mfg. Co., Inc.

BUGS
The current version only supports cmos technologies. The source code can easily be
modified for other technologies.

": UW/NW VLSI Release 3 1 61L/85

L- ...



.1

PRESIM( I.VLSI) VLSI CAD Tools Manual PRESIM( 1.VLSI)

NAME
presim - a netlist preprocessor for the nil VLSI circuit simulator

' SYNOPSIS
" : ~predso infile om~ile [conf itflle] ['8] [-qJiio ds] [-4fileosin] [presist ,voltage]

DESCRIPTION
Presim converts the .das file into a binary file to be used by rw.

The parameters and options are as follows:

infile A net list file that must include any/all extensions;

oufdle An output filename must be specified on the command line;

confisfile (optional) A file to set lambda and RC parameters for nodes and transistors in
the netlist (see the presin user's guide for descriptions of the parameters and syn-
tax).

"9 Suppresses the sum-of-products formation. This may be desired if you think
sum-of-products is formed wrong otherwise the advantages of the transistor and
node reduction make this option unattractive.

-cfile, nn Writes a list of node names and capacitances to the specified file. Only capaci-
tances larger than nob will be included.

-tfils, mn Writes a list of transistors and RC values to the specified file - there are two
entries for each transistor. The R's come from the size of the transistor, Cs
from the source/drain capacitance. Only RC values larger than mn will be
included.

U1-prest, voltage
Provides a worse-case estimate of the circuit power consumption by assuming
that all the pullups (DEP or LOWP devices with drain=Vdd) are all on simul-
taneously. Voltage specifies the supply voltage,

Presim also attempts to open the file basenanm.al, where basenne is defined as the input file
name minus its last extension. It is non-fatal for this file to be absent.

SEE ALSO
PRESIM User's Guide, VLSI Design Tools Referencs Manmal, UW/NW VLSI Consortium,
University of Washington, (Christopher Terman, MIT Laboratory for Computer Science).

AUTHOR

Christopher Terman (MIT)

BUGS
Propagation of X state information for cmos circuits in rW is unreliable if the gate reduction
in presim is performed. If this information is required, suppress gate reduction with the -g
option in presim.

UW/NW VLSI Release 2 I DRAFT



PRESTO ( l.VLSI) VLSI CAD Tools Manual PRESTO ( L.VLSI)

NAME
presto - combinational logic minimization program

SYNOPSIS
presto

DESCRIPTION
Presto is an efficient combinational logic minimization program. This program not only
reduces the number of product terms, increases the number of don't care inputs, but also
reduces the number of the output connections. Therefore, this program is very useful to pla
designers.

Input is taken from standard input. Output goes to standard output.

An example of typical input is as follows:
14
.o2

.p4

101111
000Z Ix
1111 01
0101 10

The integer after .i is the number of input variables. The integer after -e is the number of
output variables. The integer after "pr is the number of input product terms. 'Y is optional
for input listing. There is another option "4" for intermediate results.

In the input part. 1 means logic level 1, 0 means logic level 0, X(or -) means don't care. In the
output part, 1 means that the term is connected to the output, 0 means that this term is not
connected to the output, and x(or -) means that the output doesn't care whether this term is
connected or not. ".e" means the end of the input file. When there is a format error in the
input file, the program will give the message: 'INPUT FORMAT ERROR' and abort the job.

AUTHOR
Sheng Fang

SUWINW VLSI Release 2 1 6'4184

- U . . . . . . . . . . . . .

[* ! - .U

" ... UU.. . . . . .



.I

PSPICE(I.VLSI) VLSI CAD Tools Manual PSP[CE( 1.VLSI)

NAME

pspice - prepare an input file for the Spice circuit simulator

SYNOPSIS
psplea [-ral [-n]ea [-d defsfile [--in mode]if [-e expfihe basename

DECI=PTION
Psplce is a shell script for preparing Spice input from information from several sources. Pspice
runs sam2splce to convert from a basenamems format circuit description to a Spice-compatible
description and modifies the sim2spice node label translation table to be acceptable Spice com-
ments. It then runs spcpp to translate a pseudo-Spice formatted file that contains symbolic
node labels to a Spice-acceptable file. Finally, pspice concatenates the circuit description file,
the translation table, a file of untranslated Spice input, and the translated Spice input into a
single file named basenamwipchs. This file is usually an acceptable Spice input file. The
optional parameters can be used to cause parts of this process to be skipped.

The options and parameters are:

-ses Suppresses the execution of the sim2spice step.

-rn Indicates that the files created in intermediate steps are to be deleted.

-d de sfile Specifies a file to be used as a sint2spice definitions file.

-m modelf ie Specifies a file that contains Spice input that is to be included (untranslated) in
the final output. It is intended that modelfle name a file containing Spice
MODEL cards as well as other Spice commands that are independent of the
particular circuit being modeled.

-# exp ile Specifics a file that contains pseudo-input for Spice. Spcpp will interpret strings
in exp ile that are bracketed by '<' and '>' as node names to be translated
into spice node numbers using the translation table (basename.names) created
by sm2spice. Lines containing bracketed tokens are converted into Spice com-
ments. It is intended that ezpfiUe contain Spice commands that describe the
experiment to be simulated on the circuit. The ability to use mnemonic node
names makes the preparation of Spice input much easier and it means that the
description of the experiment need only be specified once, even if the circuit is
modified and reextracted. If epfie is not specified then spcpp is not executed.

bausename Specifies the base name for the files describing the circuit. If sim2spice is run
then a file named basenang.i must exist. If sim2splce is not run then the files
barenmwe .sa s and baeamw.spice must exist.

FILES
basexam.sim circuit description input to sin2spice
d esfile optional slm2spice defs input
baaenamnames modified slm2spice translation table output. This is read by spcpp (.)
besenamr.spice slm2spice output Spice format circuit element definitions (.)
modelfei optional Spice MODEL commands to be included in basename.spcln
"pile input to spcpp containing pseudo-spice commands desribing the experiment

to be simulated
baseme.spex translated output from spepp (.)
basenam.ipcin The Spice input deck created by concatenating basenonesples,

basenam .asmes, modelflie, and basename pcz

Note: Files marked (e) are deleted by the -rm option.
.- SEEC ALSO

sim2spice(l.vlsi), spcpp(l.vlsi)
spice(1.vlsi)

UW/NW VLSI Release 2110/3
U 1?.



PSPICE ( .VLSI) VLSI CAD Tools Manual PSPICE ( l.VLSI)

mextra(.vlsi), cifplot(CADI)

AUTHOR
Robert Fowler (UW/NW VLSI Consortium, University of Washington)

DIAGNOSTICS
The error messages are intended to be self explanitory. Note that sim2spice and spcpp produce
their own error messages.

BUGS
The command line is long enough to tempt a user to call pspice from yet another sheU script.
A better way to do this is to set up an alias for papice with the commonly used options already
set.

UW/NW VLSI Release 2 2 10/1/83

~~~~~~~~~~~.i.:.'... -. -.... ...... '.-:.... :... :.............:.............:.:... .. . .i 2.i.i. .N . ..... ...... : .. .... .. :



RNL ( 1.VLSI) VLSI CAD Tools Manual RNL ( 1.VLSI)

NAME
ml - timing and logic smulator for VLSI circuits

SYNOPSIS
rl [cndfie]

DESCRIPTION
Rni (NetLisp) is a timing logic simulator for digital NMOS circuits with a lisp-like command
interpreter. It has also been used with many CMOS circuits with some success. The RXI
User's Guide discusses some of the limitations found in simulating CMOS circuits. To use rni,
one needs a Am file for the circuit to be simulated. This can be derived from the mask file
(e.g., CIF) or developed using netlist, a program that processes textual schematics.
One must first convert the .uim file to a network file suitable for use by rni. To do this run

presim:

prelefilename~ss nefile [cofigjparams

which converts the file filenameala into netfile, a binary file for rxi. (see Presim User's Guide
for information on the various configuration parameters.

The optional cmdfite is the file rn initially reads for user input. Usually one prepares a com-
mand file that loads one or more library files containing RNL function definitions and reads in
the network from netfile. As simulation proceeds, user defined functions developed for test-
ing the circuit can be added to the command file. At a minimum the command file should
contain the commands

(load "uwstd I')
(load °uwsimJl)

When using the load command both netlist and rn search the current directory and then any
directories specified in the environment variable RNLPATH. The value of RNLPATH defaults
to SUW_VLSlTOOLS/liblrxl. Read-network does not use RNLPATH. Netfile must be pro-
duced by presim. When the end-of-file is reached in the command file, input is taken from
stdin. Commands and formats to be used are given in the XNL User's Guide.

The top level of rn is a simple loop:

(1) read command from current input;
(2) evaluate command, performing specified actions;
(3) print the result and loop back to (1).

The following is a list of the objects that rid knows about

numbers - signed integers. (16 bits on PDP11s, 24 bits on VAXen, 28 bits on PDP10s).
- floating point.

strings sequences of characters enclosed in quotes C'). Useful as constants for file
names, print statements, etc. Special characters can be introduced into the
strings by using the backslash escapes:
Nn' newline
*\re return
N t, tab
Nooo' ascii code 'ooo where ooo are octal digits

symbols variable names. Any sequence of characters that isn't a number, string, or some
special character -- starting symbols with a letter, followed by more letters,
numbers, and punctuation is usually a safe bet.

nodes an electrical node.

UWINW VLSI Release 2 4/30/84



RNL (I.VLSI) VLSI CAD Tools Manual RNL( I.VLSI)

liars a sequence of objects enclosed in parentheses. Standard LISP syntax applies,
including dot notation. The empty list *0 is also called 'nil'.

subrs primitive, or built-in. functions (like 4)

The functions are listed by application area. The areas are:

- arithmetic functions
- predicates
- list functions
- I/O functions
- miscellaneous functions
- special form
- network/simulation functions
- functions defined in 'uwsimr

mE AMS
sadist(l.vlsi), preuias(1.visi), sinyfilh(S.visi)

RNL User's Guide. VLSI De Tools Rhferem Manual, UW/NW VLSI Consortium, Univer-
sity of Washington, (Christopher Terman, MIT Laboratory for Computer Science).

AUTHOR p
Christopher Terman (MIT

BUGS
User defined macros with the same name as a node in the net list puts rnl into an infinite
loop.

Propagation of X state information for cmos circuits is unreliable if the gate reduction in
presim is performed. If this information is required, suppress gate reduction with the -
option in presim.

UWINW VLSI Release 2 2 4/30/84

*% %F . 'a . ~ '.' % -



RULEC(CAD) UNIX Programmer's Manual RULEC(CAD)

rulec - Compile design rules for Lyra

SYNOPSIS
robe (-1.1 rules

DESCRIPTION
Radec is a shell script with the following processing steps:

i) The actual Lyre rule compiler is invoked to translate the symbolic rule description,

rules r, to lisp code, rulesj.-

ii) The lisp compiler, Liszt, is invoked to compile rulesj to rules.e

iii) rades.e is loaded into Lyraeproso to generate an executable lisp Lyra, rules.

iv) The intermediate files rulesJ, and rules* are deleted.

The following options are supported:

-I (lad only) No compilation is done. Previously compiled rules, rules, are loaded into
Lyraproto to generate an executable Lyra, rules. This option is useful mainly at
Berkeley, where Lyraproto changes frequently.

--G (save object) Nameo is not removed. Enables 'rube -1 rules' in the future.

FILES
cad/bin/rulec - rulec shell script.
cad/lib/lyra/Rulecl - lisp rule compiler
cad/lib/lyra/Lyra.proto - Lyra sans compiled rules code.
cad/lib/lyra/* x - standard rulesets.
cad/lib/lyra/DEFAULTS -- gives default rulesets for Caesar technologies.

SEE ALSO
Lyra (CAD)
List (1)

AUTHOR
Michael Arnold.

!I

3rd Berkeley Distribution 10/24/82

.7i* .. ......
I. .","- "' .'" S' " ' -"" ''° "-. ; " *"", " -"", : -''-' '" -" '" ''''"" "' , .,."' . " "" '.,. -i "



SIM2SPICE (CAD1) UNIX Programmer's Manual SIM2SPICE(CADI)

NAME
sim2apice - convert from mextra format to Spice (circuit simulator) format

SYNOrSIS
i"pie (d defu] basenamejm

DESCRIPTION
Sim2spice reads the basename dm, basename.nodes and basename *l files created by inextra and
creates a Spice readable circuit description, basename.splce. Spice requires node numbers and
sim2spice generates a translation table basename .aaam which shows the onextra nodelabel
corresponding to a given node number.

The user can specify histher own translation table by using the -d option, where defs is a file
of definitions. A definition can be used to set up equivelences between .Am node names and
Spice node numbers. The form of this type of definition is:

at *imo mne spice nwnber [tech]

The tech field is optional. In nMOS, a special node, 'BULK', is used to represent the substrate
node. For cMOS, two special nodes, 'NMOS' and "PMOS', represent the substrate nodes for
the 'n' and 'p' transistors, repectively. For example, for nMOS the in node 'GND'
corresponds to Spice node 0, 'Vdd' corresponds to Spice node 1, and 'BULK' corresponds to

* Spice node 2. The defs file for this set up would look like this:
set GND 0 nmos
set Vdd 2 nme
set BULK 3 nmos

A definition also allows you to set a correspondence between Aim transistor types and and
Spice transistor types. The form of this definition is: -

der sin rans spice trans [tech]
Again, the tech field is optional. For nMOS these definitions would look as follows:

def e ENMOS nmos
def d DNMOS nmos

Definitions may also be placed in the '.cadrc' file, but the definitions in the def a file overrides
those in the '.cadrc' file.

Sim2spice also reads 'N' lines generated by mextra with the -o switch. In order to compute
capacitances from this it must have a set of conversion factors between length/area and capaci-
tance. These are specified in the sim2spice section of '.cadrc' file in exactly the same format as
in the mextra section of the '.cadrc' file (see mextra).

The program has been extended so that a comment line beginning with "= is interpreted as
an MIT Am style node equivalence line.

To create a complete Spice input file it is necessary to append applicable Spice model descrip-
tions as well as the user's Spice simulation commands to the basenanie.upc file.

- It is recommended in most cases that the user run pspice rather than sim2spice. Pspice incor-
porates the features of sit2spice but will in addition allow the user to build all of the Spice

* input file in one step. Pspice also incorporates the features of spcpp.

'""" bauenaonvsim
basenamn.nodes
basenamneal
basenubneospice

W basenoeames--

3rd Berkeley Distribution 10/I/83 1

*%o*..



SIMMSICE (CADi) UNIX Programmer's Manual S[M12SP[CE (CADI)

SEE ALSO
meztra(1.vlsi), spice(l.vlsi), pspice( 1.vlsi), spcpp(1.vlui)

* AUTHOR
Dan Fitzpatrick (UCB)

MODIFICATIONS
Neil Soiffer (UCB) - cMOS fixes.

Rob Fowler (UW/NW VLSI Consortium, University of Washington) - node equivalence han-
dling and misc. bug fixes.

BUGS
The only pre-defined technologies are nmos' and 'cmos-pw'. Only one definition file is
allowed.

Warning: for nMOS circuits the node names 'ENMOS' and "DNMOSW are preempted by
uam2spice as synonyms for WBULKW.

The node equivalence handling is not completely general. New nodes can be added to
equivalence clases, but classes cannot be merged. This is detected and an error message is
produced.

-,Berkeley Distribution 10/V83 2

. . . .. .



SIMSCOPE ( l.VLSI) VLSI CAD Tools Manual SIMSCOPE(lVLS ).:.~

NAME
simscope - view time-series of simulator output.

SYNOPSIS

utmscOpe

DESCRIPTION
simscope is designed to display signal output produced by RNL or SPICE on a Tek 4105 or a
GP-19 graphics terminal. To make hardcopies, you need a Tek 4695 printer (or compatible
hardcopy device) in conjunction with the Tek 4105 graphics terminal. Any program that
might periodically interfere with the display, notably sysline, should be switched off.

General Rules for Usng simscope:

1. Names to be entered in response to simscope's requests may contain alpha as well as numer-
ical characters.

2. Numbers to be entered in response to sinmcope's requests may be fixed-point or floating-
point numbers (the latter format is also referred to as scientific notation). Examples of
fixed-point numbers are 123, 3.55, +45000, etc. Examples of numbers in scientific. notation
are 3.5e4, 0.333e-9, 0.1e-9, +244_5e5, etc. Numbezs may not be negative (negative time
scales, times, and positions do not make sense to simscope).

3. While entering a name or a number, characters typed erroneously may be deleted with
either the RUBOUT key (CONTROL-H is equivalent) or the BACKSPACE key
(DELETE on some keyboards).

4. All numbers displayed by simscope are in scientific notation. The mantissa consists of one
digit, a decimal point, another six digits, the e indicating the exponent, the sign for the
exponent, and two digits for the exponent.

5. After reading a behavior file, amscope uses the same time units as those used in the
behavior file. These are nanoseconds (ns) in RNL-generated files and seconds (s) in

SPICE-generated files.

6. Indeterminate RNL signals (state "X') are displayed with a logic level of 0.5.

How to Start and Exit slmscope

Work with slmscope is most convenient if you change to the directory that contains the
behavior file you want to view. Being in that directory, simply enter simscope. simscopecomes
up with a greeting display. The window begin and end times are set to 0 (B = 0.000000+00
and E = 0 000+00) and, consequently, the time scale is 0 (T = 0.000000+00), too. The

mode (see below) is set to fixed-time-scale mode. The Y-scale, in units per division, is set to I
(Y . IM00000+00).

Below these indicators the menu is displayed, followed by the request that you hit a key indi-
eating the menu function you wish to select. Valid keys are: f, n, b, e, t, yo c, d, s. r, and q,
all of which may be entered as capitals (with the SHIFT key). Each letter represents the first

1UW/NW VLSI Release 2 184



SIMSCOPE (I.VLSI) VLSI CAD Tools Manual SIMSCOPE ( I.VLSI)

letter of the corresponding menu function (see below). After you press any of these keys, the
corresponding function is immediately activated no RETURN is necessary.

To exit uimacope, press the °ql key (Quit).

simscope Fanctlons

File

This function serves two purposes. First, it provides the following information about the file
presently loaded:

name of present behaviour file

file begin time (the time of the first signal entry in the file)

file end time (the time of the last signal entry in the file)

for each signal in the file:

first change (the time of the first entry of the signal in the file)

last change (the time of the last entry of the signal in the file)

y-poation (the vertical position of the signal in the display; a number between
I and 99, I is the lower end of the window, 99 is the upper end of the win-
dow).

name (the signal's name)

The second purpose of the File function is to facilitate the loading of a different file. If you
press y (yes) in reply to the function prompt, File will ask you for the name of the new
behaviour file you want to load. Any other key will terminate the File function, display all
signals, and return you to the menu. If you enter a name, the corresponding file is read.
Reading the behaviour file may take awhile, during which time the cursor may flash at various
positions on the screen (hence the message: 'Reading file. Please wait. Don't worry if the cur-
sor fluhes a bit.).

Nodes

You will be asked for a node name (default is the node last entered). sinicope then asks
whether you want to display the node's signal or delete the node's signal from the display. +
or just RETURN means display, - means delete from display (the y-position of the signal is
set to zero). Next simscope asks for the position (vertically) in the window. Enter 99 for the
very top of the window, I for the bottom of the window, any number between I and 99 for an
intermediate position. (One division on the y-scale is equivalent to 5 positional units.)

UW/NW VLSI Release 2 2 11/1/84



SIMSCOPE (1.VLSI) VLSI CAD Tools Manual SIMSCOPE ( .VLSI)

Reposition a signal by entering its name with Nodes, then enter the desired new position.

Assuming that you normally want to change more than one signal in a row, file information
(as in the File function) is displayed after you enter a y-position, providing you with a sum-
mary of the information on all nodes if the behaviour file.

Use the Display function to display the signals.

Sets the window begin time (wB = at left side of the window).

In fixed-time-scale mode, a change of the window begin time moves the window (whose time
width remains unchanged) across the file.

In fixed-window-end mode, a change of the window begin time expands or contracts the win-
dow in a 'rubber-band-like fashion.

End

Sets the window end time (E = at right side of the window).

The time scale will be readjusted automatically to be consistent with the new window end
time.

The window begin time is not affected.

Setting the window end time will switch over to fixed-window-end mode. In this mode
changes to the window begin time will not affect the window end time, but will readjust the
time scale. You can use End for switching to fixed-window-end mode (without actually chang-
ing the window end time) by confirming the present (default) value of the end time. To do
that press "e", then just hit RETURN.

T-nsle

Sets the time scale of the window (T - below the window).

The window end time will be readjusted automatically to be consistent with the new time
scale.
The window begin time is not affected.
Setting the time scale will switch over to fixed-time-scale mode. In this mode, changes to the
window begin time will not affect the time scale, but will readjust the window end time. You
can use T-scale for switching to fixed-time-scale mode (without actually changing the time
scale) by confirming the present (default) value of the scale. To do that press "t', then just hit
RETURN.

S

Y-d

Sets the vertical scale in units per division (*Y = below "B = ). The default is 1, which is a
good value for RNL. The vertical extent of SPICE signals is usually larger, however (for
example 5 Volts, i.e. 5 units). Increasing the Y-scale allows you to fit more of the larger sig-
nals on the screen without overlapping.

* UW/NW VLSI Release 2 3 11/I184



SIMSCOPE ( I.VLSI) VLSI CAD Tools Manual SIMSCOPE ( I.VLSI)

Copy

To make hardcopies, you need a Tek 4105 and a Tek 4695 printer (or compatible device). (If
you activate the Copy function on a GP-19 terminal, you will get the message: 'Use a Tek 4105
terminal. (You can also use MTP). Hit any key to continue.')

Display

All signals with a y-position greater than I are displayed. Use this function to display the sig-
nals after you have made changes for any node (deletion, positioning or repositioning), or if
you want to refresh the display for any reason.

Save

All parameters determining the particular display state are saved for later retrieval. 'Save"
first aaks you for a name of the file in which you want to keep the present state. It then saves
in this file the present behaviour file name, window begin time, time scale, window end time,
mode (I for fixed-time-scale mode, 0 for fixed-window-end mode), and the names of all
displayed signals with their positions on the y-axis.

Saved states can be restored easily with the Retrieve function. You may conveniently con-
sider the names of 'Save" files as markers (possibly with short names like 1, 2, 3, .... or al,
register3, Load10, etc.), which can be "jumped to' with the Retrieve function.

Retrieve

Retrieve is the function used to restore a previously saved display state. You are asked for
the name of the file containing the state to be restored. If the state you want to restore
belongs to a behaviour file different from the one on which you are working presently, then
the new behaviour file is read (this may take some time).

Quit

This function terminates simscope and returns you to the UNIX shell.

The use of simlcope to display RNL or SPICE results Involves the following srepr

1. Generate a behavior file.

(a) If you are using RNL, the directive

openplot "behavior-file'

will cause the changes to all traced nodes to be written to behavior-file in addition to
being written to the terminal. Quotes are necessary if the file name has any punctua-
tion in it.

UW/NW VLSI Release 2 4 1111/84

N. . . . . . . . . . . . .-'.". ,".,. .... ..-. . . . . . . ..-. . . . .';--:''..:.-',.-..,-:



.. t 7, , J 7 , . , . . . . -. , ,,q , , . . -. -. - . - -_ .. .w - , . -r

SIMSCOPE ( 1.VLSI) VLSI CAD Tools Manual SIMSCOPE ( i.VLSI)

The RNL directive

closeplot

will terminate the behavior file. If the entire RNL session is to be recorded closeplot is
not required, as the file will be terminated when RNL exits.

(b) If you are using SPICE, a behavior file may be specified as the third positional param-
eter of the SPICE command. Behavior records will be put on this file for all nodes
specified on the SPICE PLOT directive.

2. Use the F (File) function of simscope to load the behavior file and get information on the
signals stored in it.
Use simcope's other menu functions to display any signal in the file on any position (vert-
ically) on the screen, change the time scale (window size) and window position. After you
have analyzed and positioned your signals, make a hard-copy, if desired.

EXAMPLE (PrqGaith ofa Dehmview lUe with RNL)
The following example uses simscope to display the behavior of a 10 bit counter, cntri0.net,
shown here in netlist format:

net file for 10-bit counter

; half adder made from gates
(macro half-adder (a b s c)

(local hl h2 h3)
(nand (hl 2 16) a b)
(nand (h2 2 16) a hl)
(nand (h3 2 16) b hl)
(nand (s 2 16) h2 h3)
(invert c hI))

one cell of a counter
(macro cell (in out Cin Cout)

(local cl c2 c3)
(invert cl in)
(trans phil cl c2)
(invert c3 c2)
(half-adder c3 Cin out Cout)
(trans phi2 out in)

declare global node names
(node count c in out phil phi2)

; carry-in to first significant bit controls counting action
(connect count c.0)

generate the counter
(repeat i 110

(capacitance out.i 1.234)

UW/NW VLSI Release 2 5 11/1184



simscoPE ( l.VLSI) VLSI CAD Tools Manual S[MSCOPE ( .VLSI)

(celi in!i out~i c.(l- Q) c!i) L

The RNL control file, cntrlO~l, is as follows:

RNL initialization file for 10 bit ripple-carry counter

(load 'uwstdl')
(load *uwiml")

(read-network 'cntrl0')

(setq report-form nil) This turns off the report generator

(setq incr 1000)

bind symbols to node names

(chifag '(phil phi2 out.1O out.9 outA out.7 out.6
4 outS5 outA out.3 out.2 out.1))

(defun mnit (dummy)

(I '(count in.1 in 2 in 3 in.A in.5
inh in.7 in.8 in.9 in.10))

(I '(phi2))
(h '(phil))

(step incr)
(I '(phil))
(step incr)

(x '(in.1 in2 in.3 in.4 in.S
in.6 in.7 in.8 in.9 in.10))

(h '(phi2))
(step incr)

(I '(phi2))
(step incr)

(h '(count))

(wr-report)

'done

(defvec '(bit bout out-l0 out.9 outS out.7 out.6
out.S out.4 out3 out2 out.l))

UWINW VLSI Release 2 6 11/84



* SIMSCOPE ( I.VLSI) VLSI CAD Tools Manual SIMSCOPE ( I.VLSI)

(detvec '(dec dout out.10 out.9 outA out.7 out.6
out.5 out.4 out3 out2 out.1))

(def-report '(10 bit counter current state' newline"
count (vec bout) (vec dout)))

Generate the behavior for the counter using RNL

netlist cntrl0.net cntrl0.sim
presim cntrl0sim cntrl0
RNL cntrlO1

init 0 initialize the counter

openplot "cntrl0.beh" 0 open the behavior file

# (.beh stands for network behavior file)

c 30 0 run 30 clocks

exit ,P exit RNL

SEE ALSO
RNL(1.vlsi) SPICE(1.vlsi), mtp(1.vlsi)

SIMSCOPE User's Guide Release 2.0 Available from the UW/NW VLSI Consortium, Sieg Hall,
FR-35, University of Washington, Seattle, WA 96195

"User's Guide to RNL" 'VLSI Design Tools Reference Manualr, UW/NW VLSI Consortium,
University of Washington, (Christopher Terman, MIT Laboratory for Computer Science).

IN
"SPICE User's Guide, WLSI Design Tools Reference Manual," UW/NW VLSI Consortium,
University of Washington, (A. Vladimirescu et at., 15 Oct. 1980)

RESTRICTIONS
1. In graphics mode, which is obviously required for simscope, the GP-19 can display upper

case characters only. sirucope Rstill recognizes, and processes correctly, lower case charac-
ters. You have to know which characters in your file and which node names are upper
case, and which are lower case, and enter them accordingly. Otherwise, simscope may tell
you that it does not know the name you entered. The Tek 4105 terminal does not have
this problem.

2. The File function does not recognize the " (tilde) as part of a path name.

3. RNL and SPICE write only changes of signal levels to the behavior file. Therefore, a
signal's value before the first file entry is not known. sinscope's strategy to deal with this .
situation is to display this value as indeterminate (0.5, X in RNL).

4. The number of signals in a behavior file is limited to 20 (17).

U YW/NW VLSI Release 2 7 11/11/84



SIMSCOPE ( l.VLSI) VLSI CAD Tools Manual SIMSCOPE( L.VLSI)

5. The length of behavior files is restricted to 20,000 signal changes (i. to 20,000 lines).
This could be extended easily, if need be.

BUGS
1. In case the number of signals in a behavior file is greater than 20 or the behavior file con-

tains more than 20,000 signal changes (ie. to 20,000 lines), sinscope crashes.

2. The first line of a behaviour file is discarded, because in the case of RNL behaviour files
this line contains irrelevant information different from the information of all other lines.
Therefore, the very first signal change of a SPICE behaviour file is lost. This is not noti-
cable in most cases, however.

3. Some versions of SPICE produce behaviour files that contain floating point numbers for-
matted in a non-standard manner. Encountering of a non-standard format in the
behaviour file causes simacope to crash. A typical case is that a number like "0.00Oe-7" is
given as '0. e-7*. simcope recognizes the first format only. The behaviour file can be
mended easily by using an editor to globally replace . e by .000e.

Thee bugs will be removed with the next release of sinmcope.

AUTHOR
Rudolf W. Nottrott (UWINW VLSI CONSORTIUM)

-*_ UW/NW VLSI Release 2 8 , . . I/84



SPCPP (I.VLSI) VLSI CAD Tools Manual SPCPP( .VLSI)

NAME
spcpp - Spice (circuit simulator) input pre-processor

SYNOPSIS
spcpp [--[ n] [-d Ir [-t rmt [- on e n isal ,,

DESCRIPTION
Spcpp is a program that translates bracketed text tokens in an input file into other text strings.
It is intended to allow users of spice to prepare their simulation input using mnemonic node
names rather than the numeric node numbers required by Spice commands. The program has
two major modes of operation. If the user does not specify a file that contains a translation
table, then spcpp builds a translation table itself numbering the tokens from zero as it
encounters them. Alternatively, the user can specify the name of a file containing a transla-
tion table to be used. In particular, the .names file created by sim2spice is usable as a transla-
tion table file.

The options and parameters are:

-e Indicates that the first non-whitespace word of each line of the translation table file
should be skipped over. This is useful if your translation table has an asterisk ('W")
in column I of each line to allow it to be read by spice as comments.

-sn Indicates that n lines at the beginning of the translation table file should be skipped
over. If no number is specified then only the first line of the file is skipped.

-d Ir Redefines the token delimiters to be 'T' and 'r' respectively. The default delimiters
are '<'and'>'.

-t tmame Specifies a file that contains a translation table (default is to build a translation
table as described above). Each line of this file should have at least two non-
whitespace words on it. If the - option is specified then the first word on each
line is ignored. The next word is interpreted as a string to be translated and follow-
ing one is interpreted as the target string into which it is translated. Any subse-
quent words on the line are ignored. For Spice input preparation the target string
should be a numeral. The -a option allows the file to be prefaced by one or more
lines that spcpp will ignore.

-a onae Specifies a file into which the output is to be written. If this option is not used
then the output is written to irootpcx where iroot is obtained by stripping away
any tags from iname.

Iama Specifies the name of the file to process.

A bracketed token is defined to be a left delimiter character, zero or more spaces, a word (the
token) not containing either right or left delimiters, zero or more spaces, and a right delimiter
character. Unmatched delimiter characters are not allowed in any context. Bracketed tokens
are not allowed to span lines. Tokens and the strings that they translate into are limited to be
at most 40 characters each.

Any line that contains no bracketed tokens is simply copied from the input to the output. If a
line does contain a bracketed token then the input line is written into the output a Spice com-
ment line. An output line follows immediately. If the line is valid, then the output line has
the untranslated parts immediately below the corresponding parts of the commented input
line with the target strings substituted for the bracketed tokens. If an error is dctected, then
the output line has a caret ('") immediately below the point at which the first error is
detected. An error message line then follows. Since the scanning of the line is abandoned
there may be subsequent undetected errors in the remaining part of the line.

UW/NW VLSI Release 2 1 10//83

".: _.: ,.. ,.... ,.... .-. .- ,..,..,,. ..... .... . . .,.. ,...- .-.-. ,,,--.. .,.. . . ... .... . . .... . . . . . . . . . . . . .,..,.. .-. .... . . ...... ... .,.. .



SPCPP(1.VLSI) VLSI CAD Tools Manual SPCPP( l.VLSI)

Example:
If the following lines are contained in the translation table file:

Vdd 1
Input 55
Output 107
foo 23
bar 45

then spcpp will, upon seeing the lines:

.plot trans v(< Input> ) v(< Output>), i(< Vdd>)
4- v(< foo> ), v(< bar>)

will output the lines:

* plot trans v(< Input>) v(< Output>) v(< Vdd>)
.plot trans v(55) v(107) v(l)

* + v(< foo> ), v(< bar>)
+ v(23). v(45)

Note that spcpp correctly handles Spice continuation cards.

Note also that the substitution process is not recursive. That is, once a token has been
translated, the translated string is not rescanned.

The usefulness of spcpp for simulating a circuit extracted from a layout depends upon the user
being able to ensure that his mnemonic node labels will be retained through the extraction
process. The mexira and sim2spice manual entries will help with this.

Pspice is a shell script that runs sim2spice and spcpp and concatenates several files is useful for
preparing Spice inputs from aim files.

FlU
ine

irootspcx
ona en
maine

SEE ALSO
mextra(l.vsi), pspice(1.vlsi), sim2spice(l.vlsi), simtools(i.vlsi), spice(1.vlsi),

SPICE User's Guide. VLSI Deshws Toots Reerenes Manual, UWINW VLSI Consortium,
University of Washington, (SPICE Version 2G6 User's Guide, A. Vladimirescu et a., 15
October 1980)

AUTHOR
Robert Fowler (UW/NW VLSI Consortium, University of Washington)

DIAGNOSTICS
The error messages are intended to be self explanatory. If spcpp encounters a syntax error on
a line then it suspends processing on that line and writes it as a Spice comment to the output
file. It then writes a line containing a caret (") under the character at which scanning failed
and finally, a line containing an error message. It then goes on to process the remaining lines
of the file. If errors have been encountered then at the end of the output file spcpp writes
messages to the effect that errors have been encountered and exits with status 1. The error

UW/NW VLSI Release 2 2 10/I/83



SPCPP(1.VLSI) VLSI CAD Tools Manual SPCPP( I.VLSI)

messages written to the output file begin with dollar signs. In addition, some number of mes-
sages are directed towards the standard error output.

BUGS
The target strings are not checked to see whether they are valid numerals or not. This can be
regarded as either a bug or a feature.

The target string must fit into the space from the left to right token delimiter inclusive. This
is normally not a problem since most node numbers will be small integers and the available
space will be at least three characters. This was done so that the input lines and the
translated outputs would line up vertically.

UW/NW VLSI Release 2 3 0/1/83



SPICE ( .VLSI) VLSI CAD Tools Manual SPICE ( 1.VLSI)

NAME
spice - circuit simulator

SYNOPSIS
spice infile outile [mtpfile]

DESCRIPTIONSpice reads acircuit description from Infile. utput is written to uffule.and error messages to

standard error. An optional output file, mtpfile, can be used by nup to obtain a multiple time
series plot on a Printronix.

Spice calls spice2g6, a general-purpose circuit simulation program for nonlinear DC, nonlinear *

transient, and linear AC analyses. Circuits may contain resistors, capacitors, inductors,
mutual inductors, independent voltage and current sources, four types of dependent sources, -

transmission lines, and the four most common semiconductor devices: diodes, BJTs, JFETs,
and MOSFETs.

Spice2g6 has built-in models for the semiconductor devices, and the user need specify only the
pertinent model parameter values. The model for the BJT is based on the integral charge
model of Gummel and Poon; however, it the Gummel-Poon parameters are not specified, the
model reduces to the simpler Ebers-Moll model. In either case, charge storage effects, ohmic
resistances, and a current-dependent output conductance may be included. The diode model
can be used for either junction diodes or Schottky barrier diodes. The JFET model is based
on the FET model of Shichman and Hodges. Three MOSFET models are implemented; MOSI
is described by a square-law I-V characteristic, MOS2 is an analytical model while MOS3 is a
semi-empirical model. Both MOS2 and MOS3 include second-order effects such as cbannel
length modulation, subthreshold conduction, scattering limited velocity saturation, small size
effects and charge-controlled capacitances.

To build a Spice input file for your circuit from mextra output run sim2spice or pspice.

SEE ALSO
mextra(.vlsi)
mtp(l.vlsi), sim2spice(1.vlsi), pspice(1.vlsi), spcpp(1.vlsi)

SPICE User's Guide, VLSI Design Tools Reference Manual, UW/NW VLSI Consortium,
University of Washington, (SPICE Version 2G6 User's Guide, A. Vladimirescu er al., 15
October 1980).

Program Reference for Spice2, E. Cohen, ERL Memo. ERL-M592, Electronics Research
Laboratory, University of California, Berkeley, June 1976.

SPICE2: A Computer Program to Simulate Semiconductor Circuits, L.W. Nagel, ERL Memo.
ERL-M520, Electronics Research Laboratory, University of California, Berkeley, May 1975.

The Simnwation of MOS Integrated Circuit Using SPICE2 A. Vladimirescu and Sally Liu,
UCB/ERL M80/7, University of California, Berkeley, February 1980.

AUTHOR
g (UCB)

BUGS
MOSFET Model, Level=2 does not work, due to a charge conservation problem (it grows).

IV l-- UW/NW VLSI Release 2 1 10/1/83 "

a. ......... ....... " " "" "''""""I " .. * '-



TPLA (CAD1) UNIX Programmer's Manual TPLA (CAD 1)

NAME
tpla - technology independent PLA generator

SYNOPSWI
tpla [-cv] [-s tyle) [-o outputile] LnpujiLe

DESCRIPTION
Tpla is a PLA generator that generates PLAs in several different styles and technologies. The
input format is compatible with eqntott, see PLA(S) for details. Tpla does not handle split and
folded PLAs.

Tpla is a program written with the Tpack system.

STYLES OV PLAs AVAILABLE
The following styles of PLAs are currently supported:

els Buried contacts, nMOS, cis version (inputs and outputs on same side of the
PLA). Clocked inputs and outputs are supported. Berkeley design rules.

Strams Buried contacts, nMOS, trans version (inputs and outputs on opposite sides of
the PLA). Clocked inputs and outputs are supported. Berkeley design rules.

Mcls Mead & Conway design rules. Butting contacts, nMOS, cis version (inputs and
outputs on same side of the PLA). Clocked inputs and outputs are supported.

Mtrams Mead & Conway design rules. Butting contacts, nMOS, trans version (inputs
and outputs on opposite sides of the PLA). Clocked inputs and outputs are
supported.

Tcls Just like lels except that it has protection frames and terminals added (a spe-
cial mod for EECS at Berkeley). q.

Ttrnum Just like 5trans except that it has protection frames and terminals added.

Isocs
Complies with GTE 5 micron, isocmaos process (lambda = 2.5 microns). Inputs
and outputs on same side of PLA. Fabricated and tested.

CS3cs Complies with MOSIS 3 micron bulk CMOS process (lambda = 1.0 microns).
Berkeley design, simulated but not fabricated. Inputs and outputs on same side
of the PLA.

CS3tran
Same as CS3cs except inputs and outputs on opposite sides of the PLA.

It is easy to create a template for a new style of PLA, and tpla(CAD5) has informa-
tion on how to do it. If you develop a particularly nice template and would like to
share it, send it to "mayo@berkeley" or 'ucbvax!mayo° .

Tpla handles CIF symbol naming directives and input & output labels as described in
pla(CAD5).

OPTIONS
-K Clock the inputs to the PLA, if this feature is supported for this style.

-O Clock the outputs to the PLA, if this feature is supported for this style.

-G num Insert an extra ground line every nun rows in the AND plane and every nan columns _1

in the OR plane.

-S um Stretch power and ground lines by um lambda.

-v Be verbose, and show (in the Caesar output) how the PLA was constructed from its

basic components.

3rd Berkeley Distribution 3/17/83 1

---. '



TPLA ( CAD1) UNIX Programmer's Manual TPLA ( CADI)

-V Be verbose, and print out information about what tpla is doing. This option implies

-a produce Caesar format (this is the default)

-c produce CIF format

-. The next argument is taken to be the base name of the output file. The default is the
input file name with any extensions removed. If the input comes from the standard
input and the -o option is not specified then the output will go to the standard output.

.8 The next argument specifies the style of PLA to generate. (This causes tpla to use the
file "cad/lb/tpla/paryle.tp as its template).

-I nwm Set lambda to num centimicrons. (200 is the default)
- The next argument specifies the template to use, this normally defaults to the standard

library. A .tp suffix is added if no suffix was specified. This option is useful for gen-
crating styles of PLAs that are not included in the standard library.

inp rfile
The file containing the truth-table. If this filename is omitted then the input is taken
from the standard input (such as a pipe).

other options
This program inherits several more options from Tpack(CAD).

FtLES
cadlbin/tpla - executable
-cad/src/tpla/. - source
-cad/lib/tpla/pe.ip -- standard templates for PLAs

SEg ALSO
eqntott(CAD), presto(CAD), plasort(CAD), pla(CADS), tpla(CADS), tpack(CAD),
mkpla(CAD)

AUTHOR
Robert N. Mayo

BUGS
The defaults for the -G and -S options have no way of knowing what the grounding require-
ments are for the style of PLA actually being generated.

If the template CS3cis or CS3tran is used with an odd number of minterms and the -G option
is used, there will be design rule violations; extra pieces of P+ implant along the bottom of
the OR plane, which will have to be manually removed.

The templates Tcis and Ttrans imply a technology (fnmos) not supplied on the Berkeley tape.
These templates will not be useful unless the associated technology files are obtained.

This program inherits any bugs that may exist in tpack(CAD).

3rd Berkeley Distribution 3/17/83 2
.;



VIC ( I.VLSI) VLSI CAD Tools Manual VIC ( l.VLSI)

NAME
vic - view an integrated circuit layout (version 2.1).

SYNOPSIS
vie [option] symboinanue

DESCRIPTIONVic is an interactive graphics display program for integrated circuits that is technology

independent and has a built-in hardcopy feature. It understands layouts in Caesar data base
format. It currently displays only on the GPI9 and Tek4105 graphics terminals, but it can pro-
duce a hardcopy on a number of devices.

The options are as follows:

-t technology
Supported values of technology are amos and cms-pw. Default is cmoupw.

-h plotter
Supported values for plotter are HF7221CT, HP722L4, HP7S0, HF75305 and
Tek4"2_31. Default is HP7580.

-2 graphics
Supported values for graphics are GP19 and Tek41S. Default is GPI9.

-f format
The only Choice for format of symbol to be read is ca (Caesar files).

COMMANDS
For all the commands, only the portion enclosed in parentheses need be typed and a list of the
possible parameters for each command (if any) and current values are shown after the com -"

mand in the menu.

(lay)en < Oat>
sets the layers to be plotted. The list consists of layer names seperated by spaces, or
the entire list may be preceded by a +". In the latter case, the given layers are added
to the plot ALREADY on the screen (it should be pointed out that a space must fol-
low immediately after the "+', followed by the additional layers). A null list sets all
layers to be plotted. Abbreviations are allowed. The first layer with the abbreviation
as its leading part will be selected. (Thus, metal can be abbreviated m, me, met or
meta, whereas meta2 will require the entire name. Warning: layer names such as
metal2 and cut2 must, therefore, follow metal and cut, respectively in the technology
files.) Default is all layers.

(n)estng levels <number>
set the number of levels in the symbol's hierarchy to be plotted. Any symbol at a level
greater than this will show up only as a bounding box with its symbol name in the
lower left corner. The current symbol is at level 1, its children are at level 2, and so
on. Default is 1.

(w)lndow
window in on the plot. Use the graphics cursor to move to the desired lower left
corner of the window and hit the space bar. Then move to the upper right corner and
do the same.

(bsrd)copy
produce a hardcopy of exactly what is shown on the terminal screen on a pen plotter.
A grid may be placed over the hardcopy by specifying anything greater than zero
when the program prompts for grid size. For this option to work, the user's terminal /*-

must communicate with the host through the plotter, in order that the plotter may
intercept the plotting commands. For the Tek4105, the grid must be displayed prior to

UW/NW VLSI Release 2 1 6/1/84



VIC ( l.VLSI) VLSI CAD Tools Manual VIC ( .VLSI)

hard copying.
(Iab)elu < vaue>

turn node labels on/off. Default is on.

(p)let plot on the graphics terminal with the current options in effect.

(v)iew view on the graphics terminal the current symbol fully instantiated with all layers and
node labels.

()raphics
return to the graphics screen (Tek41Q5 only).

(grt)d put a grid on the graphics screen (Tek4lOS only).

(he)lp show the menu.

(8)zplsa
explain each command..

(q).lt quit fronm the program.
(N)YzaboI <name>

select the symbol to be plotted. The only symbols that can be specified are those in
the sub-hierarchy of the top level symbol on the command line. Note that this is not a
facility to reinitialize the vic with a new symbol. Executing this command with no
name causes the list of symbols to be displayed. Default is the highest level symbol.

< control> C
causes current operation in progress to cease. On the Tek4lD05, to terminate a hard-
copy in progress, depress the <shift> cancel key on the keyboard and type a carriage
return.

DIAGNOMTCS
If an error occurs, a message is written to standard error and the program exits with a non-
zero status.

tec hnology .tec2
tee hnologycrp
symbol .att
symbol .ca

SEI ALSO
caesar(CAD1), tec(5.vlsi)

AUTHORS
Pat Dates
Larry McMurchic
Wayne E. Winder

* Bruce A. Yanagida

UTTWIW VLSI Relese2 2 61V84



-i , - - '--- s , - -- w -.- r, -- . r .. _-w..-. .- r ; ,r, ,r --S,' -. w -* . -. - ;-.. - - -

UW/NW VLSI Consortium CFL Reference Manual

Coordinate Free LAP Reference Manual
Version 1.0

Contents

I Introduction 2
1.1 Overview . .. .. ... .. ... .. .... ....... . .... .. ... .. .... . .. .. 2

2 Entitles 3

2.1 Prim itives ... .. ... .. ... .. ...... ... ... ... .. .. .. .. .... . .. .. 3

2.2 Sym bols .. . . .. .. .. .. .. . . .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. . 3

2.3 Sym bolic Points . ............................................ 3

2.4 Borders ............ ................................................ 5

3 Operators 6

3.1 Alignment operators ........ ......................................... 6

3.2 Center to center alignment ........................................... 6

3.3 Center line alignment ......... ........................................ 7

3.4 Common edge alignment ............................................... 7

3.5 Border alignment ................................................... 8

3.6 Point alignment .................................................... 8

3.7 Origin to origin alignment ......... ...................................... 9

3.8 Linear transformations ............................................... 9

3.9 Array constructors ......... .......................................... 10

3.10 Tiling operators ..................................................... 10

3.11 Library access .......... ............................................. 11

3.12 Symbol union ......... ............................................. 12

3.13 Initialization and termination ........ .................................... 13

3.14 Garbage collection .......... .......................................... 13

3.15 Setting CFL Attributes ....... ....................................... 13

3.16 Floating argument conversion ............................................ 14

4 Routers 15

.14.1 Planar routers ............ ............................................ 16

4.2 Non-planar routers ......... .......................................... 17

4.3 Routing to Library Symbols ..................................... 18

5 Macros 20

6 Wire Facility 21

7 7 Running CFL 32

7.1 Diagnostic facilities .......................................... 22

7.2 Rem inders .. ... .. .. ..... .. .... .. .. .. .. .. .. .. .. .... ... .. .. 23

8 Appendix 24

UW/NW VLSI Release 2.1 1 May 15, 1985
• .... ...,. ,:.. .: .. . ¢ - --- -: . -:.: -.-- . : . .. ...,...-....-. . . ..- ..; .. :. . , .. -.-... .



I,..

UW/NW VLSI Consortium CFL Reference Manual "..

1 Introduction

This document provides a general description of Coordinate Free LAP (CFL). This first section summarizes
the system's capabilities. The next section, Entities, describes the objects which are manipulated by CFL.
The third section, Operators, describes the CFL operators by functional group. Chapter 4 describes the
routers. Chapters 5 and 6 describe CFL macros and the wire facility. Chapter 7 describes the access to
the CFL library and other procedural issues related to development of CFL applications. The Appendix
provides an alphabetic listing of all of the CFL routines, with their calling sequences, grouped into categories
which correspond to the chapters of this manual.

1.1 Overview

CFL is a library of subroutines written in C intended to facilitate the construction of VLSI circuit layouts.
The system is organized algebraically in that there is a data type called SYMBOL, a set of primitive
operands of this type, and a set of operators which generate new SYMBOLs by forming combinations of
existing SYMBOLs.

The system has a very small set of geometric primitives which may combined to make objects. There
is a somewhat larger set of non-primitive objects called macros, which may be used to generate frequently
used structures such as contacts. Routing facilities are provided which generate a variety of planar and
non-planar wiring patterns used to connect functional blocks. Additionally, there is a coordinate dependent
facility called wire for generating arbitrary configurations of material.

The system has been designed to operate in conjunction with Caesar in that it is capable of both accessing
symbols generated using Caesar and writing symbols which may be accessed by Caesar. Although CFL has
sufficient functionality to allow definitions to be developed for all artwork including the lower level cells in
a design, it is intended to be used more in the mode of chip assembly. Hence the typical application would
involve using Ceasar to generate lower level cells or tiles and then using CFL facilities to assemble these leaf
cells into higher level modules.

To insure that a wide variety of assembly situations can be accomodated, CFL includes approximately
70 variants of operators for juxtaposing, transforming, and replicating heiarchies of symbols. The syntax
of these operators is quite compact since generated symbols are simply stored in program variables of type
SYMBOL *

All of the calculations which support the operators of CFL are performed from descriptions of the borders
of the symbols. The information in the border descriptions includes the bounding box and lists of coordinates
of the points where each kind of material in the symbol makes contact with the bounding box. If a border
description is available for a particular symbol, CFL will not require access to any of the rest of the geometry
of symbol.

The system will automatically generate border descriptions from the geometry whenever the need arises
but it will also automatically save them on disk when library symbols are written out. In this way, modules
which have a large number of rectangles may be accessed from the library without the need of reading all of
the files associated with their sub-modules. This capability allows CFL to assemble large blocks of circuitry
extermely quickly.

CFL provides automatic heirarchy compression when symbols are written to disk so that only those
symbols which represent meaningful functional groups need be saved.

UW/NW VLSI Release 2.1 . . .t ... .
r_" .". .. " " "" .. .".. . ." . "" . "". ' " "..' ." " '." . " . '*" ," """ 

"
" . " " .'." " ".."x" ''"



UW/NW VLSI Consortium CFL Reference Manual

2 Entities

The operations provided by CFL are defined with respect to a number of basic entities. These entities
include primitive geometric objects and compound objects, called symbols; the boundaries of these symbols,
called borders; and individual symbolic points along these boundaries.

2.1 Primitives

CFL has the following two primitive symbols -

box(layr.dx.dy) - box

labol(nm, dx,dy,pos) - rectanular label

These are the same two primitives used by Caesar. AU coordinates are dimensionless. box creates a box
on the specified layer with dimensions dx and dy. label creates a Caesar label. The label has associated
with it a rectangle with dimensions dx and dy and a name. This rectangle and name form the graphic for
the label displayed by Caesar. poo is used to specify the position of the name of the label relative to its
center, label does not place any material on a mask layer and, from the point of view of CFL operators,
labels have no extent. That is, the bounding box of a label is always [(0,0),(0,01 independent of the size of
its associated graphic rectangle.

2.2 Symbol.

A CFL symbol is either a primitive object or an object formed by combining primitive objects and other
symbols using the CFL operators. Each symbol is a collection of geometry (boxes), calls to other symbols
(calls) and labels. CFL represents symbols internally as data structures having lists of boxes, calls, and
labels and all references to symbols within a CFL application program are made through pointers to these
structures. The pointers are declared with the declarator SYMBOL.

For example,

STBOL *box1, *box2. *cross1,*pairl;

box1 - box(Oaotal*. 3,10); I* vertical bar */
box2 = box(gaetal.,10, 3); /* horizontal bar */

crosel a cc(boxlbox2); /* natal cross */
pain a cx(croonl,crosol); I* two adjacent crosses */

In this example, cc is the center to center alignment operator of CFL. It creates a new object by
juxtaposing the center of the vertical bar and the center of the horizontal bar. The operator ex constructs
a horizontal pair of crosses, aligned by their horizontal center lines, with the right edge of the first cross I

,- touching the left edge of the second cross. (All CFL operators are declared SYMBOL * by the include file
'cf.h' which must be included in CFL application programs.)

2.3 Symbolic Points

For each symbol, CFL maintains a list of coordinates which mark the centers of all intersections of mask
*' layers and the bounding box. These sets of coordinates, called crossings, are maintained seperately for each

UW/NW VLSI Release 2.1 3 May 15, 1085
• ..... • .. -. ,...... , ....... . ..... ,... ...... -. - ..... •.... .. -... ,,•,•.-..- ,,-..'



'. UW/NW VLSI Consortium CFL Reference Mannal

mask layer and for each of the four sides of the bounding box. Each crossing may be referred to by specifying
its symbol, side of the bounding box, layer and ordinal along the side.

For example, the symbol, pairl, generated above looks some thing like this -

K2
-2 2

" "-I I I I

I -I I I

(pir, ,- 4-u4 4 -4aO.2

_,- 4~~~(P r, bot4--. . , ...... , 1) . .. .4

4 - 4rl 4 - 4 -,g 4-tam.1

I I l I
-'"-"I l I l
. -4---,4 4---.

.- 1 2

_.- The crossings are given by the following four-tuples -

(pairl, top . "ntalO. 1)
(pair1, *top=. "natal= . 2)

" (p.1r1, "bat, "aetal', 1)

-- .(pair1, 'bot', metal', 2)

"'"" (painr, =luft. *natal=, 1)

"'2-L". (pauul. niglht'. 'metal= , 1)

The string literals 'top', 'bot', 'left', and 'right' are used by CFL to indicate the sides of bounding boxes.
'f Layernames like 'metal' are, of course, technology dependent. For each technology, CFL uses the long format

Caesar layer names. AU crossing ordinals start at I and increase along the coordinate corresponding to the
bounding box edge in question. Top and bottom ordinals increase from left to right. Left and right ordinals
increase bottom to top.

Several of the routing operators in CFL have symbolic points as arguments. These arguments are declared
to be of type PT * and are generated by he symbolic point descriptor constructor, pt. For example, to
construct symbolic points which refer to the leftmost and rightmost metal crossings in pair1 above, the
following program statments are used -

3
PT *p1.*p2;

p1 - pt(pairl, Oleft'. motalO, 1);
p2 a pt(pairl, OrightO, .oetalO, 1);

UW/NW VLSI Release 2.1 4 May 15, 1985
.' '.',',', ' . ...'-',,.,' ', '.,, ''z'' ,,., ,,-"-'.. .,,,-'-..,''' '- .. -", ."... . . '. ,. ',"-. , -.. " ."....- -T,



UW/NW VLSI Consortium CFL Reference Manual

2.4 Bordem L

CFL borders are used as arguments to some of the routers. A border is similar to a symbolic point in that
it is referenced through a descriptor declared BORDER * and constructed using a constructor, in this case,
bd. In the simplest case, a border contains all the crossings associated with a given symbol, side and layer.
The same convention described above is used for numbering the crossings. Hence,

BOILD- *b1,b2;

bi = bd(pairl, Otop*, maet&l8);
b2 a bd(pairl, Obat. notalO);

constructs two borders; bl, containing all the metal crossings on the top of pairl, and b2, containing all the
metal crossings on the bottom of pair.

In addition to the basic border constructor which, by default, includes all crossings in its resulting border
description, CFL provides operators bdln and bdex for including and excluding specdc crossing ordinals
from border descriptions. In general then, the border description facilities are capable of directing the
routers to consider any subset of crossings along the side of a particular symbol. For example, the following
statements consturct a description of the top of pairl which includes only the second crossing:

bi a bd(pairl. OtopO, uostal);
bt a bdex(bt,t);

In the special instance that the ordinal argument is zero, bdln will include all crossings in its resulting
border and bdex will exclude all corssings from its resulting border.

Currently CFL borders are limitted to a maximum of 512 crossings. To obtain the number of crossings
currently in a border b:

S= abec(b);

UW/NW VLSI Release 2.1 - 5. ...... ..- : ay 15, 1985

.. * ..



- -. .- -

UW/NW VLSI Consortium CFL Reference Manual . -.

3 Operators

*-,/- CLF has six classes of operators -

*.. Alignaat operators
Linear trasof ormations
Array constructors
Tiling operator@
Library access operators
Mscellaneous operators

3.1 Alignment operators

The alignment operators combine a pair of symbols by placing them in one of several relationships with
respect to each other. The coordinate free nature of CFL stems largely from the fact that the alignment
operators typically specify the position of one symbol relative to another rather than the position of either
of them relative to a more global set of coordinates. CFL has six categories of alignment implemented as
the following thirteen alignment operators -

1. Center to center cc
2. Center line to center line cx'cy
3. Edge to edge llrr.ttbb
4. Border to border bx.by
S. Point to potint or center pax, pay.cp
6. Origin to origin 00

Each of these operators has two arguments @I and s2 which are symbol pointers, declared SYMfBOL .

The operators form a new symbol containing o1 and @2 positioned acccording to the indicated alignment
criterion. The position of s2 relative to @I in this new symbol is called the (0,0) position. Al of the alignment
operators have three additional variations which allow the specification of offsets from this (0,0) position in
the x, y, or both directions. The variations are formed by suffixing the operator name with dx, dy, or dxy.
For example, the ex operator has the following four forms:

cx(sl.s2) - pair in x, center aligned
cxdx(sia2.dx) - pair in x. coster aligned, x offset
cxdy(ol,@2,dy) - pair in x, center aligned, y offset
cxdxy(sl.@2.dxdy) - pair in x. center aligned. xy offset

3.2 Center to center alignment

The cc operator forms a symbol which consists of @I overlayed with @2. The symbols are aligned so that the
centers of their respective bounding boxes are coincident. This position is the (0,0) position with respect to
any offsets supplied by the dx, dy, and dxy variants.

cc(sls2) - align center to center
ccdx(si,a2,dx) - align center to center, x off set
ccdy(si.s2,dy) - align center to center, y offset
ccdxy(sl.s2,ddy) - align center to center xy offset

UW/NW VLSI Release 2.1 6 May 1, lo85S-- .?*. . .



. , .-- -,--. ---.---- I - - % *. - -. - . ''' . ' ~ .-- - -

UW/NW VLSI Consortium CFL Reference Manual

3.3 Center line alignment

The ex operator forms the horizontal pair of symbols (sl.o2). The right side of the bounding box of @I is
adjacent to the left side of the bounding box of s2 and the cells are aligned by their horizontal center lines.
This position is taken to be the (0,0) position with respect to the offsets which may be supplied using the
dx, dy, and dxy variants.

The cy operator forms the vertical pair of sumbols (ol,s2). The top side of the bounding box of al is
adjacent to the bottom side of the bounding box of s2 and the cells are aligned by their vertical center lines.
This position is taken to be the (0,0) position with respect to the offsets which may be supplied using the
dx, dy, and dxy variants.

cx(si.s2) - pair in x, center aligned
cxdx(oi,s2,dx) - pair in x. coster aligned, x offset
cxdy(sl.o2,dy) - pair in x, center aligned. y offset
cxdxy(el,s2,dx.dy) - pair ia x. coter aligned, xy offset

cy(ol.s2) - pair in y, center aligned
cydx(ol.s2,dx) - pair in y, coster aligned, x offset
cydy(sl,s2,dy) - pair in y. center aligned, y offset
cydxy(so,o2,dx.dy) - pair in y. cotter aligned. xy offset

3.4 Common edge alignment

The operators in this group align a pair of symbols (sl,2) so that a specified edge of their bounding boxes
lies on the same line. In the (0,0) position, the bounding boxes of the symbols are adjacent. There are four
operators, each with offset variants. e2 is placed to the right of @I in the case of the bb and tt operators.
s2 is placed above al in the case of the 1i and rr operators.

bb(si,s2) - alin bottom to bottom
bbdx(l,s2,dx) - align bottom to bottom. x offset
bbdy(si.s2.dy) - align bottom to bottom. y offset
bbdxy(sl.s2.dx.dy) - align bottom to bottom xy offset

ll(s1.s2) - align left to left
lldx(sL.s2,dx) - align left to left. x offset
lldy(sl.s2.dy) - align left to left. y offset
lldxy(sls2,dx.dy) - align left to left. xy offset

rr(sl.s2) - align right to right

rrdx(sl.s2,dx) - align right to right, x offset
rrdy(sl,s2.dy) - align right to right. y offset

* rrdxy(sls2.dxdy) - *.align right to right. xy offset

tt(sl.s2) - align top to top
ttdx(sl,s2,dx) - align top to top. x offset
ttdy(ol.s2.dy) - align top to top. y offset
ttdxy(sls2.dx.dy) - align top to top. xy offset

I I

UW/NW VLSI Release 2.1 7 May 15, 195

,--A .



UW/NW VLSI Consortium CFL Reference Manual

3.5 Border alignment

The bx operator forms the horizontal pair of symbols (sl,s2). The right side of the bounding box of .1
is adjacent to the left side of the bounding box of s2 and the symbols are aligned so that corresponding
patterns of material at the common border match up. This position is taken to be the (0,0) position with
respect to the offsets which may be supplied using the dx, dy, and dxy variants.

The by operator forms the vertical pair of symbols (sl,o2). The top side of the bounding box of al is
adjacent to the bottom side of the bounding box of a2 and the symbols are aligned so that corresponding
patterns of material at the common border match up. This position is taken to be the (0,0) position with
respect to the offsets which may be supplied using the dx, dy, and dxy variants.

The algorithm that performs the alignment for bx and by will use center line alignment if it can not
identify the same pattern of material common to the adjacent borders of the symbols and issue a warning
message.

bx(st.s2) - pair in x, borders aligned
bxdx(J1,92,dx) - pair in x, borders aliped, x offset
bxdy(sl,2.dy) - pair in x, borders aliped, y offset
bxdxy(o1,s2.dx.dy) - pair in x. borders aliped. xy offset

by(al.J2) - pair in y. border@ aligned
bydx(st.o2.dx) - pair in y, borders aliped. x offset
bydy(ois2.dy) - pair in y, borders aligped, y offset
bydxy(sl.s2.dxdy) - pair in y, borders aliped. xy offset

3.6 Point alignment

The point to point alignment operators are similar to the border alignment operators except that the symbols
are aligned so that specific points on the respective borders are adjacent. This allows cases to be handled
that do not meet all the conditions necessary for running the automatic alignment algorithm of the border
alignment operators.

The pax operator forms the horizontal pair of symbols (al,2). In the (0.0) position, the right side of
the bounding box of al is adjacent to the left side of the bounding box of s2 and the symbols are aligned
so that the symbolic point n1 on the right side of al is adjacent to the symbolic point n2 on the left side of
s2. Both points are taken to be on the same layer.

The pay operator forms the vertical pair of symbols (sl,@2). In the (0,0) position, the top side of the
bounding box of @I is adjacent to the bottom side of the bounding box of s2 and the symbols art aligned so
that the symbolic point n1 on the top of si is adjacent to the symbolic point n2 on the bottom of s2. Both
points are taken to be on the same layer.

pax(s1,ans2,n2,Iayer) - point slip in x
paxdx(sl.n1.s2,n2.layerdx) - point align in x, x offeat
pax y(hl,nto2,n2,1ayerdy) - point alip in x, y offset
paxdxy(slnls2,n2,1ayer,dx,dy) - point alip in x, xy offset

pay(sI,n1.s2.n2.ayer) - point alip in y
paydx(st,A1,@2,n2,1ayer,dx) - point alip In y. x offset
aydy(@1,t.e2,n2.1ayordy) -point alip in y. y offset

paydxy(st~n1,s2,n2,1ayor,dx.dy) - point alip in y. xy offset

/.. .-... .. ..: . ...... .. .. .. . -. .-. ...... : . .... ... ... V.. -.-. R elease 2..1.....- .-. . .. . ... .,... -.. .



- UW/NW VLSI Consortium CFL Reference Manual

The center to point alignment operator is intended primarily for placing labels along the borders of
symbols. Typically, the inputs and outputs of a symbol will appear as a series of crossings along the edges
of its bounding box and it will be desirable to label these inputs and outputs. Labels of this type are used
often for the purpose of simulating an extracted circuit, for example.

The center to point alignment operators have a symbol and a point argument. The result is a pair of
symbols in which, in the (0,0) position, the center of the symbol argument is concident with the specified
point. In the case of the other alignment operators, offsets refer to the positioning of the second symbol
relative to the first. In the case of cp, the offsets refer to the positioning of the symbol relative to the point.

cpd(ei~pl) - center to point
cpdx(ol,p,dx) - center to point. x offset

cpdy(el,pl,dy) - center to point, y offset
cpdxy(el,pl.dxdy) - center to point, xy offset

A typical application of ep to label a number of inputs of a symbol t1 would look like the following.

tl a cp(labcl(Ein.1g,0 .0 .4).pt(ti.lcft", fetal, i);
ti a cp(labol(sin.2",0,0.4),pt(tl,lXfts.ne talg.2);
t1 a cp(labol(gin.30,0..4).pt(tl,left.na, talO,3);
ti a cp(labol(sin.4".OO,4),pt(t~lleft, notalo.4);

3.7 Origin to origin alignment

The oo operator forms a symbol which consists of al overlayed with e2. The cells are aligned so that the
origins of their respective geometry are coincident. This position is the (0,0) position with respect to any
offsets supplied by the dx, dy, and dxy variants. Unlike the other alignment operators, the operation of oo
is coordinate dependent. It is a special purpose operator intended to be used primarily in conjunction with
the routers to locate generated wiring within its containing cell.

oo(sl,e2) - alip origin to origin

oodx(sl.s2,dx) - slip origin to origin, x offset
oody(ele2,dy) - slip origin to origin. y off set
oodxy(ei.s2.dx.dy) - align origin to origin. xy effect

3.6 Linear tranformations

There are three linear transformations -

sx(s) - airror In x
eyes) - nirror in y
rot(s,n) - rotate

The argument to rot is in degrees and must be an integer multiple of 90. Note that mx and my mirror
in the indicated coordinate as opposed to around the indicated axis. That is, mx operates by replacing x
with -x for all x coordinates in its argument.

UW/NW VLSI Release 2.1 9 May 15, 1985

A. -z .LA-



UW/NW VLSI Consortium CFL R'fereuce Manual

3.9 Array constructors

There are three array constructors nx, ny, and nxy, which can be used to generate horizontal, vertical,
or rectangular arrays of a given symbol. As in the case of the alignment operators, offset variants of these
operators are also defined. The interpretation of the offsets is, however, slightly different. dx and dy, when
supplied, are taken to be the spacings between the bounding boxes of successive array elements. The (0,0)
position is when the bounding boxes are adjacent. The variants of the array operators which would produce
a non-rectangular structure are not defined, for example, nxdy.

nx~san) - repeat in x
nxdx(e.n,dx) - repeat in x. x offset

nxy(s.nx,ny) - repeat in x and y
nxdx(@,nx.nydx) - repeat in x and y, x offset
nxydy(a,nx,ny,dy) - repeat in x sad y. y offset
ndxy(snx,ny.dx,dy) - repeat in x and y. xy offset

ny(sn) - repeat in y
nydy(sen~dy) - repeat in y, y offset

There are three additional array constructors repx, repy and repxy which construct arrays of particular
spacial periods. The arguments to these routines are also given as dx and dy but they specify the periods
rather than offsets. These operators do not have variants for providing additional offsets.

ropx(o.ndx) - repeat in x with period dx
repxy(s.nx.nydx.dy) - repeat in x and y. with periods dx dy
repy(e.ody) - repeat in y with period dy

3.10 Tiling operators

Tiling is similar to an array operation except that each element of the generated array can be a different
symbol. There are three tiling operators vx, vy, and vxy, which can be used to generate horizontal, vertical,
or rectangular tilings. These opertors are similar to the array operators except that the first argument is an
array of symbol pointers rather than a single symbol pointer. The tiling operators, then, operate on vectors
of symbols so their mnemonic starts with v. There are no offset variants for the tiling operators since the
offset for each tile could potentially be different. All symbols in a row are arranged so that their bounding
boxes are in contact and aligned by their center lines.

vx(sa) - vector Ia x
vxy(e.nx.ay) - vector In x aid y
vy(eGn) - vector in y

vxy generates a plane of the symbols s aranged so that their bounding boxes are in contact. All symbols
in the same row of the plane are assumed to have the same height. s is treated as though it is dimensioned -.
s[ny][nx] in the calling program.

UW/NW VLSI Release 2.1 10 May 15, 1985

;~~~~~~~~~~~~~~~..'.. ,. •. .......... ,-. ...... ........-.,,........,.........,.....,....,...... .,,., .................... _.-



UW/NW VLSI Consortium CFL Reference .lauual

3.11 Library access

There are two operations which access library sybmols -

go (name) - get library symbol
gup(naae) - get library symbol with prefix
ps(naze,s) - put symbol in the symbol table
pep(nRaa,.) - put symbol in the symbol table with prefix

go will read a library symbol in Caesar format, place the symbol in the data base and return a pointer to
it. If the symbol is already in the data base, gs simply returns the pointer, that is, it will read the symbol
only once.

pm compresses the heirarchy below its argument and marks that argument as a library symbol. cflstop
will cause all library symbols to be written to the disk in the Caesar format.

The heirarchy compressor removes from the heirarchy all cells which are not marked as library cells, that
is, cells which were not read in with go or cells which have not been marked as permanent by a call to
pm. Therefore, pm can be used to not only to save symbols but also to control the actual structure of the
heirarchy.

Currently, CFL does not support any search path for accessing library symbols. All symbols are read
from the sub-directory ./ca and all output symbols are written into ./ca. Ceasar or CFL symbols from global
cell libraries must be copied into ./ca before they can be accessed.

gap is identical to go except that the CFL attribute 'prefx' is prepended to the name, before the symbol
is referenced. pep is identical to pa except that the CFL attribute 'prefix' is prepended to the name when
the symbol is made permanent. The file on which the symbol is written will also have a name which includes
the prefix.

gap and pep are intended for use with generators, such as a ROM or PLA generator, in which several
instances of the generated circuit may be parts of a single larger circuit. Since errors will generally result if
the sub-cells of the various generated instances are not kept distinct, CFL provides a global symbol name

"-" prefix as a way of simplifying the construction of names which include an instance indication as a pr fix.
The following call sets the prefix attribute to the value ROMI -

'-. €cluetc(sprefix", 810O416);

Following this call, the call

ml * pmp('si',nt);

will make al a permanent symbol with the name ROMlsI. ROMIsi.ca will be the name of the file containing
this symbol on exit.

UWN LIRelease 2.1 Ii-. . . Ma 15, 1985



UW/NW VLSI Consortium CFL Reference Manual

The remaining sections describe operators and routines do not fit in any of the above categories.

3.12 Symbol union

mu(ol.@2) - symbol union

The su operator performs symbol union. This operation merges two symbols and includes only one
instance of common structure. This operation is useful in cases where it is necessary to align more than one
symbol to the same border of a given symbol.

For example, suppose it is desired to align the symbols a, b, and c as follows:

I a I

CI I

I b I
*---------- 4-------

If a and c are combined with tt, the bounding box of the result includes both a and e, so b can not be
easily combined with this result. The symetric situation occurrs if a pair is made of b and e using bb. The
difficulty is overcome with mu in the following manner.

r a su(tt(aoc),bb(boc))

A pair is made of a and c aligned top to top and a pair is made of b and c aligned bottom to bottom.
The result, r, is the union of the ae pair and the be pair and includes only a single instance of c.

It should be stressed that the implementation of su is less general than its name implies. It is intended
for application in a commonly occurring although restricted circumstance in which I and 62 consist only
of calls and two of these calls, one in Il and one in s3 refer to the same symbol.

The limitiations of mu may be best presented by outlining its algorithm. su overlays Il and .2 so that
common sub-cells appear to coincide. Then, only one instance of the common sub-cells is included in the
result symbol. The method begins by searching sl and s2 for a common sub-cell to use as an alignment key
for super-position. The sub-cell must be called by both Il and s2 and its transform must be involve only
translation in both cases. The search finds the first symbol on the call list of Il which is also called by m2
and which meets these criteria. (To qualify for the union operation al and s2 must contain only calls - no
boxes and no labels.)

Next a pair of transforms is generated, tl for the @l instance and t2 for the s2 instance, which will
translate the alignment key to the origins of its respective containers. Since the transforms in the calls are
strictly translations, the inverses can be constructed by simply negati.-g the displacement elements of the
translation matrices.

Finally, the union is generated by copying the call list of al to the call list of the result applying ti to all
calls. During this operation, a set of the symbols called is constructed to be used when selecting sub-cells of
s2 to include in the union. Next, the call list of m2 is copied to the call list of the result excluding all cells
which are already there since they were called by @1. t0 is applied to any cell included from @2.

-". UW/NW VLSI Release 2.1 .12 , IS IQ. ......



0lV'6

,.UW/NW VLSI Consortium CFL Reference Manual

Recall that tl translates the key cell to the origin of sl and also that t2 translates the key cell to the
origin of @2. Since both of these origins have the coordinates (0,0) the alignment keys would exactly coincide
in the result. Generalizing this, ou assumes that any instance of a cell called by .2 which is also called by
al, were it to be included in the result, would exactly overlay some instance already present in the result
by virtue of a call in ol. As a consequence of this assumption, su will not work correctly in cases in which
there are sub-cells called by both al and .2 which are not intended to be coincident in the result.

3.13 Initialisation and termination

cflatart(technology) - initialize cf 1
cflstopO - terminate cfl

CFL can be used with any of the various technologies currently supported by the design system. It
obtains its table of layer names from the ,tec2 technology files in the PLAP path. For MOSIS bulk CMOS
the technology name is 'cmos-pw' and for NMOS the name is simply 'nmos'.

cflstart initializes the package. It must be called before invoking any other CFL functions. cfstop causes
all permanent symbols to be written to disk and should be called just prior to exiting a CFL application.

3.14 Garbage collection

cf icallect 0 - release temporary symbols

CFL does not provide automatic garbage collection - symbols, once created, are retained indefinitely. In
most instances this will not cause a problem since the number of symbols generated by typical CFL appli-
cations will not be very large. For some applications however looping constructs can generate a substantial
number of 'intermediate' symbols which will cause a memory overflow. (In practice this condition occurrs
around 50K symbols.)

When cfleollect is called by the application, all space associated with temporary symbols is released.
Temporary symbols are those which were not read in from the library or which have not been saved with
a call to p.. After calling eflcollect an application must not attempt to reference the values of any of
its SYMBOL * variables which were pointing to temporary symbols before the call. The pointers are not
modified by eflcollect but the storage they point to will have been returned to the system.

A typical application requiring cflcollect is one in which a looping construct must be used a number
of times to build up a set of larger structures. After each structure is generated it is saved by calling ps.
cfleollect is then called to purge the temporaries from memory and the next structure is generated and
saved.

3.15 Setting CFL Attributes

-. "leet(a,v) -met CFL integer attribute
cflmetc(a.v) - met CFL character attribute

V

These routines provide a mechanism for applications to modify some of the parameters which control the
operation of CFL. Currently only two of these parameters are implemented - the integer attribute 'grain'
and the character string attribute 'prefix'. 'grain' determines the smallest resolvable unit of distance and
'prefix' sets the prefix to be used with the gp and pop operators. The default grain is 2 which means that

V
, ' UW/NW VLSI Release 2.1 13 May 15, 1985



UW/NW VLSI Consortium CFL Reference Manual

all CFL dimensions are multiplied by 2 when they are stored internally and written to output files. A setting
of 2 makes CFL's .ca files compatible with Caesar's .ca files. (grain should always be a multiple of 2.) The
default prefix is empty.

3.16 Floating argument conversion

All CFL routines which have dimensions or displacements as arguments expect that these arguments will be
given as integers. However, internally, CFL scales these integers so that it is possible to represent fractional
values, say 1.5. Floating point numbers may be used as dimension or displacement arguments to all routines
by first applying the conversion routine -

f(r) - convert floating arg uent

For example,

@3 cxdx(s1,s2.fC1.5));

UW/NW VLSI Release 2.1 14 May 15, 1985



UW/NW VLSI Consortium CFL Peferouce .Manwla

4 Routers

CFL does not currently provide high level routing facilities such as a general channel router or switchbox
router. Rather, the CFL routers consist of a set of wiring pattern generators each of which is specialized to
a particular routing situation. These routers, which are designed to be used in combination with each other
and the other CFL operators, support a set of elementary routing operations from which more sophisticated
patterns may be constructed.

There are two types of routing facilities available in CFL, planar routers and non-planar routers.

The planar routers are -

pp - point to point router
pr - general planar router
ext - border extender

fill - Caesar fill operation

and the non-planar routers are-

plx - horizontal point to line router
ply - vertical point to line router

elb - general elbow
tee - toe

Generally speaking the planar routing facilities of CFL are technology independent whereas the non-
planar routing facilities are tecnhnology dependent since contacts must be specified.

Since CFL is coordinate free, the routers operate from border descriptions and from symbolic point
designations. The generation of symbolic point and border descriptors is described in Chapter 2.

Most CFL operators produce a new symbol by combining existing symbols. The arguments to these
operators have no particular spacial relationship to each other before the operation takes place. The routers,
on the other hand, rather than combining symbols, must form connections between them. This process
requires that the symbols to be connected have a previously established fixed spatial relationship.

Symbols acquire a fixed spatial relationship as soon as they become constituents of some higher level
symbol. CFL refers to a higher level symbol, sO, which contains symbols sl and .2 as a container of at and
@2. Within any container, the relative positions of sl and o2 are fixed.

The routers, like all other CFL operators, are SYMBOL * valued functions. When a router is invoked it
produces a pattern of wiring as its result. This pattern of wiring is not 'written' into place directly by the
routing operation, rather it is a seperate symbol in its own right. Therefore to connect two symbols using
the routers, two steps are necessary:

1. Use one of the routers to generate the pattern of
wiring necessary to form the desired connections.

2. Use the origin to origin alignment operator to
locate the generated wiring pattern in the container
so that the intended connections are made.

In all cases, the wiring is generated in the coordinate system of the container and often the two steps
above may be combined using a statement of the following form-

UW/NW VLSI Release . . .. . t . . . . . .
,,., - ,-', ... ,...:'- ., .': %:-',-.-.'-....-'.-:. -" ",-:.:.' .,,'.-:. -- - .-. .. .. '...... ,.' .. '.'.... '3:'',..".- ',.-'.''-7,''



UW/NW VLSI Consortium CFL Reference Manual

result oo(container,router (container....));

The rationale for having the generation and placement of wiring patterns performed as separate stepq
rather than as an atomic operation is that in many cases routing problems require the generation of complex
patterns in which wiring generated by one call to a router must itself be connected to the wiring generated
by another call to a router. Separating the generation allows the generated wiring to become a separate
symbol which may be then operated on using any CFL operator.

4.1 Planar routers

pp(sO,p1,p2.w) - point to point router

The point to point router generates a single wire of width w for connecting symbolic point pt with
symbolic point p2. The layer of pl must match the layer of p2. pl and p2 must be uniquely locatable
within the containing symbol, sO.

pr(@O,bl.b2.w) - planar router

The planar router generates a planar wiring pattern for connecting the points specified by the border
descriptor bl to the points specified by the border descriptor b2. The borders must be on the same layer
and contain the same number of points. Recall that the functions bdln and bdex may be used to obtain
border descriptors for any subset of the crossings along a border of a symbol. The symbols specified by the
descriptors bl and b2 must be uniquely locatable within the containing symbol sO. All wires will have a
width of w.

To simplify the diagnostic process, pr will construct wiring patterns whether or not there is sufficient
space for the number of wires requested. It will, however, issue a warning message if any of the generated
wires are closer than the CFL parameter minsep. Also, it will insure that runs which are parallel to edges
of the bounding boxes of the symbols specified by bl and b2 are no closer than the CFL parameter areoff.
ninsep and arcoff have the default value of 4 which is sufficient for most situations. They may be modified

at any time with the following call -

proet (Cinsep, arcoff);

ext(bd.W) - border extender

ext generates a pattern of wiring for extending all points in the border b perpendicularly for a distance
of d using wires of width w. In the special instance that w is zero, ext will use the widths of the crossings

S in the border. Typically these wiaths will not all be the same.

UW/NW VLSI Release 2.1 16 May 15, 1985
"a '. ., • . .. . . . . . ... . . , . , . . , . . , , * - , , . . . ,... ,



UW/NW VLSI Consortium CFL Reference Manual

fill(oeide,d) - Caoear fill

fill is similar to ext except that all layers crossing the indicated side are extended a distance d. The
extensions have the same widths as the crossings. As in the case of the border descriptor constructors, the
side argument is one of the text strings 'top', 'bot', 'left', 'right'.

For example, suppose it is desired to generate a symbol a2 which consists of 5 instances of a symbol at
placed a distance 10 apart and connected by extending the material on the right side of al. The following
code will generate this configuration.

a2 u .x(ax(ooC(l,fill(w1.,right.,10)),4), l);

The fill operator generates a pattern which consists of the layers of the right side of al extended for a
distance of 10. oo concatenates this fill pattern to the original symbol al. The resulting filled symbol is
then repeated 4 times by mx. Finally, ex is used to place the right most instance of al on the row.

4.2 Non-planar routers

• . plx(eO,plp2,w.ct) - horizontal point to line router
ply(O.pi.p2w,ct) - vertical point to line router

phx generates a single wire for connecting the symbolic point pl to the vertical line running through the
symbolic point p2. The connection is made horizontally. The layer of pl is taken to be the layer of the wire.
pl and p2 must be uniquely locatable in the container symbol, aO. The width of the generated segment
is w. If not NULL, the contact, ct, is placed with its origin at the intersection of the vertical line and the
generated wire.

ply generates a single wire for connecting the symbolic point pl to the horizontal line running through
the symbolic point p2. The connection is made vertically. The layer of pl is taken to be the layer of the wire.
pl and p2 must be uniquely locatable in the container symbol, aO. The width of the generated segment is
w. If not NULL, the contact, ct, is placed with its origin at the intersection of the horizontal line and the
generated wire.

elb(aO,b.b2,w1i,w2,rev,ct) - non-planar elbow

elb generates a wiring pattern for connecting the points in border bl with the points in border b2.Wires from bl will have width wl, wires from b2 will have width w2. The pattern generated must form

an elbow but it is not necessary that bl and b2 be on the same layer. The contact, ct, will be placed with
its origin at the intersections of the wires from bl and the wires from b2 if these wires are not on the same
layer.

The rev parameter may be either TRUE (1), or FALSE (0). If FALSE the connections from bl to b2
will be in the normal order of the borders, that is, low order points in bl will connect to low order points
in b2. If rev is TRUE, the connections will be reversed, that is, low order points in bl will connect to high
order points in b2.

Through combinations of selecting subsets of the borders with bdln and bdex and utilizing the normal
and reverse options, a succession of elb invocations may be used to form a set of elbows between bi and b2
which implement any desired ordering of the connections.

UW N1W VLSI Release 2.1 17 .. . v t1 1. Olt



IS

UW/NW VLSI Consortium CFL Reference Manual

toe(aObtb2.w.rov.ct) too

tee generates a wiring pattern for connecting the indicated border of the tee connected symbol, bl, to
the wiring in the transverse routing symbol specified in the border, b2. The wiring in the routing symbol is
assumed to run perpendicular to the wiring generated for connecting the tee connected symbol. The routing
symbol, presumably generated by a prior call to a router, is also assumed to consist strictly of parallel lines,
no elbows. AU generated wires will have width w. The contact, ct, will be placed with its origin at the
intersection of the generated wires and the wires existing in the routing symbol. The rev parameter is set
to TRUE if the connection order is to be reversed.

Through combinations of selecting subsets of the borders with bdln and bdex and utilizing the normal
and reverse options, a succession of tee invocations may be used to form a set of tee patterns between b
and b2 which implement any desired ordering of the connections.

All of the non-planar routers have a contact argument. The provsion for positioning this contact in
generated routing is coordinate dependent in that the contacts are always positioned so that their origins,
coordinate (0,0), coincides with the intersections of wires on different layers. If the contacts are symetric
and generated with the CFL box primitive, as is the case with the NMOS macros gb and rb, the origins
will be in the geometric centers because the box primitive is designed to make boxes which are symetric
about the origin whenever possible. If other, asymetric, forms of contacts are needed they may be generated
according to the above criterion using the CFL wire facility described in Chapter 6.

4.3 Routing to Library Symbols

Use of the routers generally requires that three pointers into a symbol heirarchy be supplied - the container
and the two symbols to be connected. When symbols are retrieved from the library using go only one pointer
is provided. A typical problem of this form is to retrieve from the library both a complete circuit and a pad
frame and then to connect the circuit to the pads. The CFL procedure locate may be used to obtain a
pointer to any uniquely named sub-symbol within a symbol heirarchy. Al symbols saved with p. are named
symbols.

For example, the following program places an experimental CMOS register called reg.plu in a pad
frame and connects the pads. The program illustrates a number of the routing facilities of CFL.

The pad frame for this chip was generated using the CMOS pad frame generator described in man pads.

The program begins by reading in the register and pad frame using p. Note that, provided they are
available, only the border descriptions are read - not the geometry files.

Since there are connections on all four sides of the register, it is necessary to extend the points where the
wires connect somewhat to prevent wiring generated for adjacent sides from colliding. The amount of this
extension was determined empirically using Caesar to view the results of the trials.

The pad frame has subcells for its left, right, bottom and top sides called 'reg.pads.]', 'reg.pads.r',
'reg.pads.b', and 'reg.pads.t'. Pointers to these subcells are obtained using locate and border descriptors
are constructed for their inner-most sides.

Next, border descriptors are constructed for the sides of the register. Note that the SYMBOL reg now
contains both the original register and the extensions. cc is used to place the register in the center of the
pad frame forming the SYMBOL re.gchlp.

The planar router parameters nlnset and arcoff are set to 5 using proet since the routing is being done
on the 'metal2' layer. Then pr is used to generate the connections for the four sides.

Finally, reg.ehlp, which now includes the pad frame, the register, and the routing is saved using pg. The
program in this example, which generates connections to most of the pins on an 84 pin pad frame, executes
in about 2 seconds. Also, as long as any modilications to the design of the register do not affect the number
and order of its external connections, this same program may be used without modification to assemble the
chip.

VNW VY, 5T.t,.,-., . *.,./..... .-..-- ... - ..-



f'%UW/NW VLSI Consortium CFL Reference Manual

#include (stie. h)
mlclude Octl.hO

mall C

SYMBOL *pads. *reg, *reg.chlp;

BORDER *bpl. *bpr, *bpt. *bpb;,
BORDER *bul, *brr. sbrt, *brb;

cfletart(caos-pW);

/* Obtain pad frame and register

pads w ge(Oreg.padsg);
rag = gs(Oreg-.plusg);

/* Extend terminals of the register *

rig a oo~rsg.sxt(bd~reg. "leftO. Oastal2m). 1400. 6));
rag - oo(reg.ext(bd(rsg. mrightg, gastal2). 1400, 8));
reg - oo(reg~ext(Wdreg. "botO, gaetal2), 1400. 6));
reg - oo(reg.ext;(bd~reg. Otops. Oastal2s). 1400. 6));

qo/* Construct border descriptions f or the pad Ira&* *

bpl a bd (locate (pads. reg-pads-16). srlghtO. Ometal2g);
bpr a bd (locate (pads. reg-pads-0r) . Oleft*. 9astal2);
bpb a bd (locate (pads, rg.pads..bg). Otop., maetal20);
bpt a bd (locate (pads, rg.pads..tg) , bots, Onetal2g);

/* Construct border descriptions for the register 0

bri = bd(reg. wleft8, Onstal2g);
brr a bd~reg. Orightg. Outal28);
brb a bd~reg, ObotE, gaetal2);
brt a bd~reg, Otopg. mustal2g);

/* Place the register in the center of the pad Iran*

rag-.chip w cc(pads.reg);

* I./ Connect the register to thepads 0

prst(5.5);
rag-chip a oo~reg-chlp, pr~reg..ehlp, bpl. brl.S));
reg-chip = oe(reg..chlp, pr~rg-.chlp, bpr. brr,6));
reg-chip - oo~reg-.chip. pr(reg-chip. bpb, brb.8));

Irag-chip a eo(reg.chlp, pr(rog-.chip. bpt. brt,5));

pasmregchipu ,rog..chip);

* ctlatopO);

UW/NW VLSI Release 2.1 19 My1,1985z
. . ... . . . .



11W/NW VLSI Consortium CFL Reference Manat .C

5 Macros

2CFL has two groups of macros - technology independent macros and technology dependent macros. Cur-
rently, all of the technology dependent macros are NMOS. The technology independent macros are

alpha(a,layer.w) - character string, width w

croci (layeri ,dxi. dyl.
layer2,dx2,dy2) -two boxes, centers aliged

letter(c,layer.v) -alphanumeric letter, width w
letter

lne(layer~w~dx~dy) -el, north east
law(layer.v.dx.dy) * I. north west
lne(layer.w.dx.dy) *I e.South east
low(layer~w.dx.dy) - c. mouth vast

alpha generates a string of characters which are Sw wide, 8w high with 2W spacing in between. The
same rules apply to letter. The character set that is available is

0-9

Currently, space (or blank) is not available and neither are lower case letters.

The NMOS macros are -

beO - butting contact. east
bn() - butting contact. north
bsO - butting contact, mouth
bw() - butting contact, west

gb() - diffusion - metal contact
rb() - poly - metal contact

padelse(ix~dy) - pad frame elbow, north east corner
*padelaw(dc,dy) - pad frame elbow, north west corner

padelse(dx~dy) - pad frame elbow, South east corner
padolow(dx,dy) - pad frame elbow. south west cornerKpadext (dx) - pad f rawe extension

% ~ There are three NNOS pads (input, output and tni-state) that are designed to fit on the pad fr'.me.

These pads are not CFL macro-) but are available as library cells.
The pullup has a minimum gate width.

TT/WVLSI Release 2.1 !* Q x. X'*'.' tivj? I OR,



UW/NW VLSI Consortium CFL Reference Manual

6 Wire Facility L

To provide for the parametric generation of particularly complex leaf cells, or cells with specific coordinate
requirements like router contacts, CFL includes the wire facility which allows the use of symbol relative
coordinates. Note that the use of this facility can intorduce significant coordinate dependency into a design
so it should not in general be used in cases where the relative operators are able to serve. The procedures
associated with the wire facility are the following -

wire(layer.width) - Initialize a wire
at(xO,yO) - Move to the point (xO.yO)
dx(dxO) - Draw to the point (xdxO.y)
dy(dyO) - Draw to the point (x.y*dyO)
iso(s) - Include symbol origin
wl(layer) - Reset the wire layer
wwCwidth) - leset the wire width
x(xO) - Draw to the point (xO.y)
y(yO) - Draw to the point (xyO)

wire is of type SYMBOL*. All of the procedures apply to the wire generated by the last call to wire.
Note that the symbol generated by wire may contain an arbitrary number of physical 'wires' which need
not be connected. The only thing they have in common is their coordinate system.

The procedure Ito has a symbol as its argument. lso includes that symbol positioned so that its origin
coincides with the current wire position. Note that the current wire position, or more precisely, the position
within the coordinate system of the current wire, is initialized with the at procedure and maintained by all
move and draw procedures.

%''

'S

'S UW/NW VLSI Release 2.1 21 May 15. 98.,

.- . - -. .- .*.-.,. , 2



r

UW/NW VLSI Consortium CFL Reference Manual

Running CFL

Currently CFL is installed in $UWVLSI.TOOLS. It consists of two files, SUWVLSI.TOOLS/include/cfi.h
and $UW..VLSITOOLS/lib/Libcd.a. cf.h must be included in any program that intends to use CFL facili-
ties. When compiled this program must be linked with llbcft.a. Application programs may achieve access
to CFL by including the line

#include "cfl.h

in soucre modules which reference CFL facilities. These modules may then be compiled and linked using the
*following command line:

cc nodule. c $UV_VLSI.TOOLS/lIb/libcfl.a -IIULVLS.ITOOS/include

When executed, a CFL program will attempt to reference the sub-directory ./ca of the current directory
for both reading and writing symbols. It will not create this directory if it does not exist, so prior to using
CFL, this sub-directory must be created.

7.1 Diagnostic facilities

CFL contains a number of internal checks for parameter range and consistency, successful completion of the
routers, access to data files, etc. A failure of any of these checks will abort the application program with
an error message describing the condition that caused the error and the name of the routine in which the
error occurred. As this latter routine will probably be a CFL internal routine not directly called by the

.. application, the CFL error handler will also list the last 8 application level routines called before the error
occurred. These routines are listed in the reverse of the order in which they were called.

This information is hopefully sufficient to indicate the last point of successful execution in the application
as well as the cause of the error. In cases where more information is needed the the call

prtsysbol(e);

may be used to output the internal structure corresponding to the symbol a on the standard output.

The most frequent types of errors tend to be mismatches between what is thought to be on a border of a
symbol and what is actually there. Discrepencies arise easily since a single piece of material which extends
beyond the intended border causes all other crossings to be dropped by expanding the bounding box. In the

• Qcase of persistent errors it has usually been necessary to modify the problem program to output intermediate
symbols using p. and then to view these symbols using Caesar.

The most difficult to debug errors are those which cause something in the CFL library to abort without
calling the error handler. This can happen if a routine is called with the wrong number of arguments,
if an attempt is made to use a temporary SYMBOL pointer invalidated by a call to cficollect, or if the

* array argument passed to one of the vector operators is not really as long as the call indicates. To help
manage errors of this latter category, it is helpfull if larger systems are decomposed into small independently
verifyable sections.



%

UW/NW VLSI Consortium CFL Reference Manual

7.2 Reminders

1. All dx and dy coordinates are dimensionless integer values.

2. All layer arguments are alphanumeric layer names for the technology being used.

3. All primitives, macros, and operators are declared SYMBOL * in efl.h and return pointers to the
symbols they create.

4. The CFL library contains a large number of operators which are automatically declared by the cfl.h file.
As most of these names are short, potential naming conflicts are likely between the CFL operators and
the application's variables. To help avoid this problem, none of the names reserved by CFL contains
a digit. Hence variables may be safely named boxl, box2, and so on.

5. A quick way to get a complete up to date listing of all CFL facilities alphabetically arranged by category
with a one line description for each is cat

UW/NW VLSI Rlae2.1 -23 -. May 15, 1985

* ..o.'



UW/NW VLSI Consortium CFL Reference Mianual

8 Appendix

This Appendix Wiss all of the CFL functions described in this manual. The functions are arranged
alphabetically and grouped in accordance with the chapters of the manual.

-Z

I.Data constructors '

BORDR *bd(s~side~layernen) I' symbolic border descriptor '
SYMBOL *a;

char *Side;
char *layername;

BORDER *bdex(bi,i) /* exclude I from border descriptor '
4BORDER *bi;

it 1;

BORDER *bdin(bl,i) I' include I In border descriptor '
BORDER *bi;
ist I;

int f~r) I' convert floating argument '
float r;

PT *pt(s.side,layorname,n) I' symbolic point '
SYMBOL *s;
char *side;p
char *layernaae;
nt a

/* Operators '

STY4BOL *bb(sl,.2) I' align bottom to bottom II

SYMBOL *bbdx~mls2.dx) /* alig bottom to bottom. x offset -
jSYMBOL 'sI,'s2;

int dx;

STY4BOL *bbdxy~sl,@2.dA.dy) I' align bottom to bottom. xy offset '
SYMBOL si's4;
mst dx,dy;

SYMBOL obbdy(si,s2,dy) I. align bottom to bottom. y offset '
SYMBOL *Bl,'s2;
imt dy.

SYMBOL 'bx~si,s2) I'pair In x, borders aligned '
SYMBOL 'si,'s2;

TJW NW VI'S 10Itc . .1 i...



UW/NW VLSI Consortium CFL Reference Manual

SYMBOL *bxdx(sl~s2,dx) IS pair in x, borders aligned. x off set '
SYMBOL *oi,*s2;
1st dx;

SYMBOL *bxdxy(sl,s2.dx,dy) I' pair in x. borders aligned. xy offset s

N SYMBOL *si,*@2;
ist dx~dy;

SYMBOL *bxdy(ol.s2.dy) I' pair in x. borders aligned. y offset '
SYTOOL *sl.*@2;
int dy;

SYMBOL *by~sl,@2) I. pair in y, borders aligned .
SYMBOL *si.*s2;

SYMBOL *bydx(sl~s2.dx) I. pair in y, borders aligned. x offseot
SYMBOL osi.*@2;
mnt dx;

SYMBOL *bydxy(si.s2.dx.dy) Is pair in y, borders aligned. xy offseot
SYMBOL *sl1*s2;
int dx.dy;

SYMBOL *bydy(oi.s2.dy) /* pair in y, borders aligned. y offset 5

SYMBOL *si,*s2;
mnt dy;

SYMBOL *cc(sl~s2) /* align center to center AI

SYTOOL *s1.*s2;

SYMBOL sccix(si.s2.dx) I' align center to center, x offset .
SYMBOL osl,5s2;
mst dx;

SYMBOL occdxy(sl.#2,dx.dy) Is align center to center. xy offset S

SYMBDOL *s1.*s2;
mnt dx.dy;

SYMBOL 'ccdy(sl,s2.dy) /* align center to center, y offset *
STOBOL sl.Ss2;
int dy;

SYMBOL *cp~si.pi) /* align center to point 5

SYMBOL #ol;
PT sp1;

SYM4BOL .cpdx(o1,p1,dx) /* align center to point, x offset S
SYM4BOL oa1;
PT 'p1;
ist dx;

SYMBOL *cpdxy~slpi,dx,dy) I. align center to point. xy offset S

SYMBOL *@I;

*' N VLS Release- - 25 1.-5< 1,495



UW/NW VLSI Consortium 
CFL Reference Manual

PT *pi;

int dxdy;

STMBOL *cpdy(sn,p1.dy) /* &lip center to point, y offset

SYMBOL *at;

PT *pi;

-. nt dy;

* SYMBOL *cx(m.i@2) /* pair in x. center aligned
SYMBOL *ni,*2;

SYMBOL *cxdx(di.@2.X) /* pair in x. center aligned, x Offset */

SYMBOL *s*oe2;
it dx;

SYMBOL ,cxdxy(sl.o2.dx.dy) /, pair in x, center aligned. xy Offset */

SYMBOL *ui.*s2;
Sint dx.dy;

SYMBOL *cxdy(e1,u2,dy) /* pair in x. center aligned. y offst /

SYMBOL *ei,*e2;
iet dy;

SYMBOL ,cy(el~e2) /, pair in y. center aligned *1

STMBOL *l.,s2;

SYMBOL *cydx(ei.C2,dx) /* pair in y, center aligned, x offset */

SYMBOL *e1,,8 2 ;

int dx;

STMBOL ,cydxy(ml.*2.dx.dy) /* pair in y, center aligned, xy offset */

SYMBOL *et,*s2;

.nt dx,dy;

SYMBOL *cydy(el.s2,dy) /* pair in y, center aligned, y offset */

* SYMBOL *1,.*s2;

Int dy;

SYMBOL all~ui~s2) /* align left to left

STMBOL *1,*se2;

* SYMBOL *lldxleie2,dx) /* alip left to left. x offeet

... SYMBOL osl.*2;

- it dx;

SYMBOL *lldxy(el.2,dx.dy) /* alip left to left. xy offet */

SYMBOL *n1,*e2;

i nt dx,dy;

STOOL alldy(l,e2,dy) Is slip left to left, y offet *1

SYMBOL *st.*e2;

..t dy;

n SYMBOL *ax(s) /* mirror in x *I

. VN

. . . . .V IN W VLSI Release 2.1 . . . . . . . ... , ..? . .. , .. .. . , '. ' .. -.* .." .. i"" ,." .- " . , . -



UW/NW VLSI Consortium CFL Reference Manual

SYMBOL se;

SYMBOL *ny(s) /* mirror in y *1
SYMBOL *s;

SYMBOL *nx(.,n) /* repeat in x */
SYMBOL 'a;
int A;

SYMBOL *nxdx(o.n.dx) /* repeat in x. x spacing */
SYMBOL 'a
int n;
int dx;

SYMBOL *nxy(e,nx.ny) /* repeat in x and y *1
SYMBOL *a;

int nx.ny;

o SYMBOL *nxydxy(..nxny.dx.dy) I, repeat In x and y. xy spacing */
SYMBOL *@;
iat ax,ny;
int dx,dy;

SYMBOL *ny(sn) I* repeat in y 'I
SYMBOL *n;
int A;

SYMBOL *nydy(e.n.dy) /* repeat in y. y spacing '/
SYMBOL *e;
int a;
int dy;

SYMBOL *oo(aiu2) /* align origin to origin */

SYMBOL *sl,*s2;

SYMBOL *oodx(ol,.2,dx) a' slign origin to origin, x offset *1
SYMBOL *nl,*2;
tin dx;

SYMBOL *oodxy(sl@2,dxdy) /* align origin to origin, xy offset */

SYMBOL *s.,*e2;

mtt dx,dy;

SYMBOL *oody(sl.2.dy) /* align origin to origin, y offset 'I
SYMBOL *si.*h2;
mnt dy;

SYMBOL *pex(@i,nl.s2.n2.layrna2e) /* point align in x */
SYMBOL *nl,*s2;
mnt al,n2;
char *layernans;

SYMBOL 'paxdx(sl,nl,s2n2,ayereae.dx) /* point align in x, x offset '/
STY4BOL "si,',2;

-~i . . j W . ........ '>, . ..
." . - . - - - "" ' - - . " " ' " .-



D-R158 699 VLSI (VERY LARGE SCALE INTEGRATION) DESIGN TOOLS 3/5
REFERENCE MANUAL RELEASE 38(U) WASHINGTON UNIV SEATTLE
DEPT OF COMPUTER SCIENCE AUG 85 TR-85-07-03UNCLASSIFIED MDA983-85-K-8872 FIG 9/5 NL

mEE|hhh/hIhIhE
EhEIhhIhhEEIhE
IImhhImhhImIhu
EEIhIIIhIhIIEE
IIIIIIEEEEEIhE
IEEIIIEEEEIhEE



r.2

11111L2 -6"2

1111III--

-4 
1

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

JA



UW/NW VLSI Consortium CFL Reference Manual

it al. 42;
char *layernsae;

SYMBOL *paxixy~el.nl.s2,a2.layernuae.dx~dy) I. point align in x. xy offset .
SYMBOL *s,*m2;
it nl~n2;
char *layoraa;
lat dx, dy;

SYMBO0L *pexdy(sl.ul.s2.n2.layeraaa.dy) I. point align In x. y offset *
SYMBOL *si,'s2;
it al. a2;
char *layernaes;
it dy.

SYMBOL *pay(sl~sl,s2.i2,layvreaze) 1*point align Is y
SYMBOL *sl.*s2;
it ni,n2;

*char *layernsam;

* SYMBOL *paydx(hl,al,s2.n2.layernaae.dx) I. point align in y. x offset *
*SYMBOL *sl,*@2;

mnt al~n2;
char *layernaze;
int dx;

STY4BOL *paydxy(sl~al~s2,a2.layerneae.dx~dy) I. point align in y. xy off set '
SYMBOL *si.*s2;
ist zi,s2;

char *layoriaae;
it dx~dy;

SYMBOL *paydy(s, al.s2. s2,layersaa.dy) I. point align ia y, y offset *
SYMBOL *sl.*e2;
it zl~n2;
char *layerneae;
it dy;

SYMBOL *ropx(snadx) I'repeat In x. spacial period dx '
SYMBUOL *a;
lit n;
it dx;

SYMBOL *repxy(s,nx,ny.dx~dy) I.repeat in x and y. periods dx dy *
SYMBOL ;
it ax~ny;
it dx~dy.

SYMBOL *ropy(s.n,dy) P. repeat in y. spacial period dy '
SYMBOL *a;
lit A;
lit dy;

UW/NW VLSI Release 2.A 291.I~



UW/NW VLSI Consortium CFL Reference Manual

SYMBL *rot(au) I. rotate 0/

YBO . s_;
lit a;

SYMBOL *rr~ul.@2) /ali1gn right to right
SYMBOL *s1.*o2;

SYMBOL *rrdx(sl.*2.dx) /* align right to right. x off sot
SYMBOL *s1.*@2;
lit dx;

SYMBOL *rrdxyCs.92.dx.dy) /* align right to right. xy offset *
SYMBOL 0s..02;
lit dx~dy;

SYMBOL *rr4y(s1.s2.4y) I' align right to right. -1 offset .
SYMBOL *ol.*s2;
talt dy;

SYMBOL *su(hl.@2) I. symbol union 0

SYMBOL 0s..02;

SYMBOL *ott(sl.@2) /*align top to top/
SYMBOL *sl.*92;

SYMBOL *ttdx(sl,2.dx) /* align top to top. x offset
SYMBOL *s1,02;
lit dx;

SYMBOL *ttdxy(sl,2.dx.dy) /* lipg top to top , xy offset */
SYMBOL *sl,.2;
lit dx.dy;

SYMBOL *ttdy(sl.o2.dy) /* 1lig top 1 top. y offset *1
SYMBOL *1,*2;
lt dy;

SIOL *vx(s,) /* vector Ii x 0/

Y, SYMOL *8[1,;

SYMBOL *xy(s.t,s2,) / vector In x oad y */

,. SYMOL *00,*3;

,-..

SYMBOL *1;

tat dx,y;

lit 3xy;

SYMBOL *vy(,) /* vector In y */
SYMBOL *e];

tat n;

Sit ax; :

/0 CYL control ad library access ,"

lit cflcollectO /e collect temporary symbols e/

4 UW/NW VLSI Release 2.1 29 Msev vh tM LK
. , , .;'',..,''-., ,'' '., .,.. ,.'.";.*. . /.,.,.4 -.- ., . ,.. ...-,--. -.'... .,,.,'. '.'\/- .. ,. . ..



UW/NW VLSI Consortiumn CFL Reference Manual .~

tat cfloatc(av) /* got string parameter *

char *ee;

ta fl *spt(cell) /* set Ibtear paymoeth reixr
char *ca;

StatU *plsa~e) I' puInmblithae symbl tbe
char *te;

charUO *al;

SYMBOL *pop(y.s) P put symbol In the symbol table wt rfx S
char *;
SYMBOL *s;

P. leter@.

SYMBOL *olb(sO.bi,b2.u1,w2.ct~rey) /s compound. elbow *
SYMBOL *@O; /Scontainer cell 5

BORDER *bj; /.border of tee comnected cell 5
DO3DEL 42; /* border of transverse routing cell 5

tat vi, . width of wiring from bi *
w2; I.width of wiring from b2 S

SYMBOL Oct; P. contact symbol 5
tat rev; IsThU If elbow Is to reverse connection order *

SYMBOL *ext~b,d.w) 1*border extender
Solon *b;

SYMBOL *fill(o.side~d) I.Caesar fill operator "
SYMBOL sin;
char *side;
lint 4;

SYMBSOL *locate(sI.s2) I'Locate a2 within at. *
SYMBOL S@l;
char *@2;

OW/NW VLSI Release 2.1 30%-. kvt', ;
W"Wp

I Nr



UW/NW VLSI Consortium CFL Reference Manual

jut nbc~b) I'Obtain the number of crossings on the border b '
BORDER *b;

SYMBUOL *plx(u0.pi,p2.v~ct) I. peint to line in x '
SYMBOL 'sO; /* container cell '
PT 'p1; /s symbelic point 1 IIR
PT *p2; /* symbolic point 2
mut w; /s width
SIN4BOL *ct; /* contact '

SYMBOL *ply(sO.pl.p2.w,ct) /* point to lne In y '
SYMBUOL *s0; /* container cell 1-
PT *p1; /* symbolic point 1 '
PT *p2; /* smbolic point 2 '
mnt w; /' width *
SYMBOL *ct; /* contact

SYMBOL *pp(@O.pi.p2,w) /* point to point router '
ST14BOL 'sO; /* container cell '
PT *p1; I' symbolic point I '
PT *p2; /s symbolic point 2 '
mnt w; I' width '

STOBOL *pr(sO,bl,b2.w) I' planar router *
SYMBOL 'sO; /* container cell *
BORDER *bi; I' border of sub-cell 1I'
BORDER 0b2; /' border of sub-cell 2 *
mst w; /' width *

PROC prost(aineep,srcoff) I'set parameters for the planar router '
mnt minsep. I' planar router, minimum separation '

arcoff; I' planar router, offset of the filrst arc*/

SYMBOL 'tee(sO~bi,b2,w~ct~rev) I' teeo*
SYMBOL 'sO; /* container cell '
BORDER *bi; /* border of too connected col '
EWER 4b2; /s border of transverse routin *
mat w; I' Width '

SYMBOL *ct; /* contact symbol
mst rey; I' reverse flag *

1w, YALU - f orward teeo'

I' Macros *

SYMBOL 'b*O /s butting contact, east '

SYMBOL 'be() I' butting comtact. north%'
.4

STOBOL *boxClayer.ix,dy) P' box '
char 'layer;

* UYW/*N!Wy;! Release 2.1 *... .. .. .a. .*L kv



UW/NW VLSI Consortium CFL Reference Manual :

int Ix.dy;

SYMBOL 4b@O /* butting contact, south *

SYMBOL *bw() /0 butting contact, vast .

SYMBOL *cross(layer1.dxl.dyl~layer2.d~ady2) /* cross
char *layerl, *layer2;
ist dxi,dyl;
it dx2,dy2;

SYMBOL *gbO) /* aetal diffusion contact .

SYMBUOL *label(&ame~dx~dy~pos)- /* label *
char *3555;

Int dx.dy;
it Pon;

SYMBOL *lne(layer.v,dx~dy) Is o., north east S
char *layer;
it w;
it dx,dy;

SYMBOL *lnw~layor.w.dx.dy) /* *. north vest s
char *layer;
it W;
it dx~dy;

SYMBOL *lse(layer.v.dx.dy) I0 *. south east '
char *layer;
it W;
it dx~dy;

SYMBOL *lsw(layer,v.dx.dy) I. 0. south west ~
char *layer;
it W;
It dx,dy;

SYMBOL *padelae(dx.dy) 1* pad elbow - north east corner S
it dx~dy;

8 STOBOL *padelaw(dx.dy) l* pad elbow -north west corner
it dx.dy;

STOBOL *padelse(dx.dy) IS pad elbow -south east corner
it dx~dy;

SYMBOL *padelow(dxdy) I. pad elbow -south vast corner 5

int dx~dy;

SYMBOL *padext(dx) I. pad frame extension S
let dx;

S~TOOL *psllup(l.n) I. pullup

a~~~~~~~ - . . . . . ..- **~a



* *.UW/NW VLSI Consortium CrL Reference Manual

lat 1;

iat m;

SMOL *rbo) I. natal polysilicon contact

I. Wire facility '

STGOL *alpha(.layer.w) AIs tring of alpha characters s
char *s;
char *layer;
it w;

it at(xo~yo) Is set the wire position to (xO.YO)
it x0.yO;

it dx(dxO) As draw to the point Cx~dxO.y)
let dxO;

it dy(dyO) As draw to the point (x.ydyO) 5

it dyO;

int iso(s) IA inclade symbol origin 5

SYMBOL *a;

SYMBOL sletter(c.layer~w) As letter 5

char c;
char *layer;
it W;

it wi~layer) As rost wire layer *
char *layer;

SYMBOL swire(layer~width) As initialize wire
char *layer;
it width;

ist ww(width) I~rost wire width e
mn width;

* mt x(xO) As draw to the point (xO,y) S
it AO;

it Y(yO) /s draw to the point Cx.yO) *
int yo;

TLW.XW. T 1DIc..



Editing VLSI Circuits with Caesar

John Ouuterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

415-642-0885
Arpanet address: ousterhoutOberkeley

Uucp address: ucbvax!ouster

Thi user manual corresponds to Cansr VII.

1. Introduction
C3esar is an interactive system for creating and modifying VLSI circuit designs. It is based

on the Mead and Conway style of design, and produces CIF descriptions (Caltech Intermediate
Form) suitable for chip fabrication. Caesar is not an "intelligent" design system in the sense of
understanding design rules, electrical properties, or even connectivity. It is just a geometry editor
that allows you to paint pictures of VLSI circuits and to combine pictures hierarchically into
larger designs.

Caesar runs under the 4.1 Berkeley Distribution of VAX Unix. It is a two screen system.
One screen, called the tezt display, may be any standard CRT terminal capable of running the
screen editor vi. Caesar is invoked from this terminal; commands are typed at its keyboard and
a command menu and several statistics about the chip design are displayed on the text display.
The second screen is called the graphics display and is used to display in color a piece of the cir-
cuit being designed. The graphics display can be any of a variety of color displays. Caesar
currently supports AED512, AED767, Metheus Omega440, Chromatics 700, or Vectrix displays
connected to the VAX via a 06W0 baud RS232 line. It also supports Ramtek 0400 displays with
DMA interfaces. A graphics tablet must be attached to the color display (except the Cbromatics,
which has a joystick). The tablet must have a four-button cursor, which is referred to here as the
puck.

2. GettIng Startd

The command line for Caesar has the form

caesar -#< graphic# port> -t< tablet port> -p< path> -n
.m< monitor type> -d< display type> <fiJe>

All of the switches are optional and have reasonable defaults. The -g switch indicates the name
of a device in the Idee directory that should be used as the graphics display port. Thus, if the
display is connected to the machine as ldevlttyhO, then type esaer -gtlyhO (you may leave spaces

S-. between the "-g" and the "ttyhO" if you wish). If the -g switch isn't supplied, Caesar will look in
internal tables to locate the nearest AED display to the terminal from which the command is

ft -1- o ~

* -... . . .. . - ..... .... ...



Editing NLSI Circuits with Caesar March -2. 1983

issued (if none can be found, /dev/null will be used). See Section 24 for details on how Caesar
picks a default display. The -t switch is used to give the name of a port to use for reading tablet
data. If not specified, Caesar makes an educated guess as to which port to use. If the -p switch is
present it specifies a path to be used by Caesar for file lookups (see Section 15 for a discussion of
paths). If the -p switch isn't specified, then a default path of "." is used. The -n switch causes
Caesar to run in non-interactive mode; see Section 19 for more details on this. The -d and -m
switches are used to select the type of display you are using (AED, Jupiter, Metheus, etc.), and
the type of color monitor attached to the display; see Section 24 for details. If <file> is
specified, it is the name of a cell to be edited. If <file> isn't specified, Caesar will assume you
want to build a new cell from scratch.

When it starts up, Caesar attempts to read a command file from .caesar in the home direc-
tory. Whether or not it finds a file there, it next tries to read a command file from .caesar in the
current directory Command line options override specifications in the startup file. See Section
17 for detailed in:'ormation on command files.

In order to use a tablet with the color display, you may have to go to extra effort so that
Caesar can read characters from the display's port. If the display is hardwired to a machine, Cae-
sar will work fine if you just arrange for there not to be a login process for its port. If there is a
login process for -;he port, you'll have log in a job called "sleeper" on the color display. No pass-
word is required. Sleeper will run a special program to reset the terminal so Caesar can read from
it. The sleeper rograrn is extraordinarily durable (it has to be because of bugs in the AED
display). The on.y way to kill it is by typing two control-backslash characters within ten seconds
of each other. Oi. the AED keyboard control-backslash is control-shift-L. On most Berkeley sys-
tems, you can ai o kill sleeper jobs from other terminals by typing "'killsleeper <pid>" where
<pid> is the process id of the sleeper process. On some systems, you have to log yourself in and
then run sleeper ga a shell command.

Although it shouldn't happen, the display will occasionally get itself into a mode where Cae- - -'

sat cannot run. When this happens, reset the color display. On AED's, this is done by hitting
the "reset" key t'vice (it's a black key at the top left), after which you should hear a beep and see
the screen go blaik. To be absolutely safe, you may want to kill the sleeper program and log it
in again. After rsetting the display, type ":reset" to Caesar; this should fix things up again.

The rest of this manual is most easily understood if you can play with Caesar as you read.
From now on, I -ssume that you are sitting in front of a terminal, and have run Caesar with the
command "caesaa shiftcell" (shiftcell is a cell in the Caesar library).

3. The Command Interface and Text Display
After Caesar starts running, the text screen will fill with characters (see Figure 1). The text

display is divided into three sections. The lower right portion of the display is a list of all the
short commands along with brief descriptions of their functions. Each short command is invoked
by typing a single letter on the keyboard. Try typing the g short command (a grid should turn
on and off).

The lower left portion of the text display gives the names of most of the long commands
(the color map commands described in Section 23 were omitted for lack of space). A long comi-

.* mand is invoked by typing a colon (":") followed by a line of text, followed by a return. The line
of text contains the name of a command and any parameters that are needed by the command.

. To invoke a long command, you need only type enough characters to distinguish it from the other
long commands. In the listing of long commands on the text display, the minimum set of charac-
ters that must be typed to invoke each command is shown in UPPER CASE. Try typing the
commands "al1gn, al, & (which is ambiguous), and sbadeommand (which is not a command at
all). The long commands appear on the bottom line of the text display, and you may edit these
lines as you type them by using the standard Unix editing characters such as kill and backspace.

Each long command may actually contain several long commands separated by semi-colons.

.. o.............-



Editing VLSI Circuits with Caesar March 22. 1183

Caesar VII Technology: amos Visible Layers: pdmibcoel
Editing file: shiftrow .20, 15 20.5 * 120
Current cell: shiftcell -20, 15 20.5 * 40
Current view: -50, 0 150 * 143
Box (alignment: 1) -16. 10 32.5 * 2

Long Commands: Short Commands:
A.Lign Identifyc SCroll z - Zoom in a- Yank
ARray LAbel SEarch Z - Zoom out s - Stuff (-put)
BOx LYra SIdeways v - View whole chip d - Delete paint
BUtton ,MACro SOurce 5 - Center view on box LL
CIf MARk SUbedit 6 - Center view on box UR
CLOCkwise MOvecell Technolog "L-Redraw color screen
COPycell PAInt UPsidedow I -Redraw both screens
Deletecel PATh USage . - Repeat last long command
EDitcell PEek VIEw C - Expand current cell
ERasepain POpbox ViSiblela c - Unexpand current cell
Fill PUShbox WIdth X - Expand area
FL ushcell PUT WRiteall x - Unexpand area
GEtcell Quit YAnk qwer - Box left, right, up, down
I GRIDspaci RESet YCel u - Undo last modification
GRIPe RETurn YSave g - Toggle grid on/off
Height SAvecell

FIgure 1. A sample view of the Caesar text display.

This feature is particularly userul in writing macros (see Section 16). To include a semi-colon as
part of a long command, rather than as a separator, type "\;" instead of ";". If a long command
consists of a single quote followed by another character, the character is used as a short com-
mand. For example, the long :ommand s'a is equivalent to the short command 'a. This feature
;s useful for macros and command files.

The top portion of the text screen contains several statistics about the cell being edited.
These will be explained in later sections.

All error messages are typed on the bottom line of the text screen. If several errors occur
simultaneously, a mechanism like that of the more program is used to prevent one message from
getting overwritten by subsequent ones. The first message is printed, then "-More--" appears at
the end of the bottom line of the text screen. After you have read the first message, type a space
character to see the next message. To see how this works, type the long command -get xyzabe.

Whenever Caesar make any modifications to the cell database, it saves enough information
to undo the effects of the most recent modification. If you discover that you have changed some-
thing you didn't really want to change, type the short command u to undo it. Undo applies to
the last command that changed the database, including itself.

4. The Box and Croashal,

When you invoked Caesar, a picture of an NMOS shift register cell should have appeared in
the middle of the color display, along with a white box and a blinking crosshair. If you move the
puck around on the tablet, the crosshair will move around on the screen. The crosshair and the

box are used as too(# to invoke Caesar commands; they are not part of the circuit. Most of
Caesar's commands operate in some way or other on the area selected by the box. The crosshair
is used to position the box and to select mask layers and subcells.

-3-I-' 3



Editing VLSI Circuits with Caesar March '2. 198.3

The current position and size of the box are displayed in the upper portion of the text
screen. The four numbers on the right side of the line labeled "Box" are, from left to right, the
x-coordinate and y-coordinate of the lower-left corner of the box, and the x-size and y-size of the
box. The units used in Caesar correspond to the lambda units of Mead and Conway. The preci-
sion of Caesar units is .5 lambda, which is in keeping with the smallest features of the Mead and
Conway design rules.

Two of the buttons on the puck are used to position the box. When the left (white) button
on the puck is depressed, the whole box is moved so that its lower-left, or fixed, corner coincides
with the location of the crosshair. The right (green) puck button positions the upper-right, or
variable, corner of the box without changing the lower-left comer.

The box can have zero (or even negative) size. When it has zero size it appears as a cross
rather than as a rectangle.

When positioning tbe box with the crosshair, the crosshair position is rounded of to the
nearest lambda unit. This alignment factor is displ:tyed on the "Box" line of the text display.
To change it, type the long command

ang <eiss>

which will set the alignment factor to <size> units. <size> is rounded of to the nearest power
of two, and cannot be les than .5. As part ot the ation of "llgn, the box's coordinates are re-
aligned to the units specilied. <size> defaults to on,: lambda.

There are a few additional long commands thai. can be used to position the box. The com-
mand

:box <keyword> <amount>

will adjust the sze and/or position of the bcx by <amount> units, according to <keyword>.
If <keyword> is 'np". "down", "left", or "right", then the box is moved in the specified direc-
tion. If the keyword is "xbot", " xtop", "ybot", or ":'top", then the size of the box is changed by
adding <amount> to its lower or upper x- or y-cocrdinate. The amount may be negative. As
usual, unique abbreviations for the keywords are acceptable. The short commands q, w, a, and r
are equivalent, respectively, to sbox left 1, :box rlLt 1, :box up 1, and tbox down 1.

The long commands

thelght <ualte>
:width <sih~e>

may be used to set the box's height and width to specific sizes. The upper-right (variable) comer
of the box is moved so that the x- or y-dimesion is Set to <size> units. If <size> is preceded
by a "1" character then the box's size is changed by moving the lower-left (fixed) comer rather
than the upper-right one. <size> defaults to 2 units.

S. Painting Commands
Caecar's mechanism for creating mask designs is much like painting. The two basic opera-

tions are to paint one or more mask layers over the area of the box, and to erase one or more
mask layers from the area of the box. You should think of the mask information as paint: it has
no structure other than its color and shape (for example, it doesn't make sense to think about
mask information as objects such as rectangles or polygons; it is just a structureless blob).

There are several ways to paint and erase. The simplest way is to use the bottom (blue)
button on the puck. First, use the left and right buttons to position the box over the area you
wish to paint. Then move the crosshair over an existing piece of the design and press the bottom
button. The area under the box will be painted in whatever mask layers are present underneath
the crosshair. If there is no paint underneath the croshair, then the area of the box is erased.

Try painting a diffusion (green) rectangle, then erase a small hole in the middle of it. Remember

.-



Editing %LSI Circuits with Caesar March 22. 1983

that the painting commands, as well as any other commands that change the database, can be
undone with the u short command.

Pating can also be invoked from the keyboard. The long command

tpalnt <layers>

will paint the area of the box with the layers given by <layers>. The parameter <layers> is a
string of one or more single-letter mask layer abbreviations (see Table I). The legal mask layers
depend on what technology you are using. Only mask layers are valid for the .-paint command:
the usage of the other layers will be explained in later sections.

Besides using the blue puck button, there are two additional ways to erase paint. The long
command

.- ewmpat <layers>

will erase <layers> from the area of the box. <layers> defaults to "* "['. Alternatively, you
can use the short command d. This command will check the area underneath the croshair to
determine which layers are visible at that point, and will delete paint in those layers from the
area of the box. If there are no layers visible underneath the crosshair, them the d command will
erase the layers "*I".

.Mask Layers for Technology "amos"
p or r - Polysilicon layer (red).
d or X - Diffusion layer (green).
m - Metal layer (b!ue).
I or y - Implant !ayer (yellow).
b - Buried contact layer (brown).
e - Contact cut layer (black cros.).

Overglass hole layer (grey).
Error layer: used by design rule
checkers and other programs.

• - All mask layer.
Mask Layers for Technology "cmos-pw"

p or r - Polysilicon layer (red).
d or g - Diffusion layer (green).
m or b - Metal layer (blue).
P or y - P+ implant layer (yellow).
w - P-well layer (brown).
C - Contact cut layer (black cross).
o - Overglass hole layer (grey).

Error layer: used by design rule
checkers and other programs.

0. All mask layers.
Layers Available in all Technologies

I- Label layer.
S- Subcell layer.
X- Box layer.
G- Grid layer.
B- Background layer.

Table 1. The single-letter layer mnemonics.

When specifying layers for long commands such as :paint and erasepalnt, the characters
'+' and '-' may appear in the string as a convenience in typing. The '-' character causes

-%



Editing VLSI Circuits with Caesar March 22, l.3

subsequent layers to be omitted from the group rather than added, and + cancels the effect of
an earlier '-'. Thus the layer specification '-p' is synonymous with 'dmibcoe'. If '+ or '-' is the
first character of the string, then "'" are automatically included and subsequent letters add to or
subtract from these layers. For example, :erase -m will erase labels and all mask layers except
metal.

Caesar maintains a special collection of paint called the yank buffer that is used for shuffling
around portions of the cell being designed. To enter information into the yank buffer, type the
long command

.ak <laye >

This command will treat the box like a cookie cutter and will make an imprint of all the mask
and label information underneath the box. The information is saved in the yank buffer, while
leaving the original circuit unmodified. If <layers> is specifled. then only those layers are
yanked. The mask layers, as well as T and 'S', are valid for -yank (later sections describe how
to yank labels and subeells). The long command

:put < layers.>

causes all the information in the yank buffer to be added back into the cell, such Lhat the lower.
left corner of the information is coincident with the lower-left corner of the box. After :put the
yank buffer is still intact and may be sput again and again. <layers> has the same format as in

* the werasepalnt command. Only the layers selected by <layers> are put; <layers> defaults
to "*IS". The yank buffer is loaded automatically w part of every :erasepaint comm:and. To
move a rectangular piece of the picture just werse it, m:;v- the box over to the new location, and
:put it back again.

- . There are also short commands to perform the 3ame functions as yank and :piat. The
short command a is equivalent to :yank and s is eauivalent to !put (think of "s" a an abbrevia.
tion for the verb "stuff"). For each of these two commands, the crsshair selects the la'yrs to be
yanked or put. If there is no visible paint underneath the crosshair, then layers "*l" are affected
in a and "*IS" are affected in a. If there is paint visible underoeatb the crosshnir, then only the
mask layers visible underneath the crosshair are used ic. thp caornrand.

The information in the yank buffer can be fipped and rotated. To flip the contenis upside
down (i.e. mirror about a horizontal line) use the long command

:upsidedown y

The y indicates that the yank buffer is to be flipped, rather than a cell. The long command

sideways y

will flip the yank buffer contents sideways (i.e. about a vertical line), and the command

:clockwise <degrees> y

will rotate the yank buffer contents by <degrees>, which must be a multiple of 90. If
<degrees> is omitted then it defaults to 90.

The long command

* ili <direction> <layers>

makes it relatively easy to stretch cells or extend busses. The <direction> parameter is one of
- . --. the keywords "up", "down", "left", or "right" (unique abbreviations such as "u" or "I" are

acceptable). <layers> has the same format as in erasepalnt; any of the mask layers are valid.
If the layers are omitted then all mask layers are used. This command finds all paint crossing one
edge of the box and extends that paint to the other edge of the box. For example, MfU up will
extend all paint crossing the bottom of the box so that the paint reaches to the top of the box.

. •Its effect is just as if the colors underneath the bottom edge of the box were a paintbrush; the
brush is dragged up to the top of the box leaving a trail of paint behind it. Try this command on

. . .. . .

-. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 7 C-.- ... -• ,. . - .. . ... .. L .- . . . . . .



Editing VLSI Circuits with Caesar March 22. 1983

" -.'~pieces of the shift register cell. To stretch the cell in the middle, delete one half of it (which puts
the deleted paint into the yank buffer), then :put it back, leaving a gap between the two halves
of the cell; use -0iU to fil in the gap.

8. Vlewing Commands

This section describes Caesar commands that change what is displayed on the graphics
screen. The commands in this section don't have any effect on the actual circuit being designed.
The information visible on the graphics display is called the current view. Its location and size
are given in the upper portion of the text display in units in the same manner as the box location
and size.

The s short command is used to zoom in on a small piece of the circuit. To use this com-
mand, first position the box over the area you want to fill the screen. After typing s, the view
will be magnified so that the area under the box just barely its on the screen. The short com-
mand Z does the opposite of a: it demagnifies the view such that what used to fill the screen just
fits in the screen area given by the box. The v short command changes the view so that the
whole chip just barely fits on the screen.

To shift the current view without changing its scale factor, use the long command

ucrol <direetlon> <amount> <units>

In this command, <direction> is one of "left", "right", "up", or "down," <amount> is a
number, and <units> is one of "lambda" or "screens" (abbrevations are ok). The meroll com-
mind shifts the view in the indicated direction by the indicated amount. The <units> parame-

% ter defaults to screens, and if both <amount> and <units> are defaulted, the default is 0.5
screen.

There are two additional short commands for shifting the current view. If 5 is typed, the
view shifts so that the lower-left corner of the box is in the center of the screen. If 8 is typed, the
view shifts so that the upper-right corner of the box is in the center of the screen. In both cases,
the resulting view has the same scale as the initial view.

(The vlew long command also changes the view; it is discussed in Section 13.)

It is possible to prevent some of the mask layers from being displayed, thereby making it
easier to see the remaining layers. The long command

rvlsibllayes <layers>

causes only <layers> to be displayed on the graphics screen. The wisibelatyrs command
makes it easier to verify the alignments between a few layers by eliminating the extraneous layers
from view. <layers> has the same format as in the asrne command. For example, wtis -p
will remove polysilicon from the set of layers that is displayed and won't affect any of the other
layers. The visible layers are listed at the top of the text screen. Although it is possible to
modify layers that aren't visible, Caesar will always issue a warning if there is a chance that
invisible things may have been changed; u may be used to undo these effects if they weren't
wanted.

7. Labels

A label consists of a rectangle and a piece of text. Caesar treats labels as comments but
outputs them in CIF files so that other programs, such as circuit extractors, can use them. To
place a label, type the long command

flabel <text> <posltlon>

.C> A rectangle will be displayed on the graphics screen with the size and location of the box. and
4% <text> will be displayed near the rectangle (if the rectangle has zero height or width then a line

-



Editing VLSI Circuits with Caesar March 22. 198-3

will appear. and it both dimensions are zero then a small cross will appear). <position> deter-
mines where the text is to be displayed: it must be one of the words "center", "right", "bot-

tom", "left", or "top". If not specified, <position> defaults to "top".

For most purposes labels are considered just like a mask layer, with layer abbreviation I. A

cell's labels are displayed only if the cell is expanded. Labels are made visible and invisible using
the -vllblelayers command. Caesar will automatically turn off label visibility when the picture

gets so large that labels are likely to clutter things up, but this decision can be overridden using
- ilslblelayers. The :erae, :yank, and .-put commands can be used on labels just like any of

the mask layers. The only difference between labels and paint is that if any of a label is affected,

then the whole label is affected: it is not possible to erase or yank half of a label. When yanking

or erasing, labels are ignored if they completely contain the box; to be yanked or erased, part of

'' the rectangle of a label must be touching or contained in the box.

8. Grid Commands

*7 The g command turns a grid on and off in toggle fashion. By default the grid is spaced on

one unit centers. If the default grid spacing does not suit your fancy, Caesar allows you to .use

any spacing you wish. When you issue the command

."ldpalnag

-_) Caesar will recompute the grid so that the grid lines have the same x and y spacings as he X and
y dimensions of the box and the box falls exactly on grid lines. This new grid spacing will be

remembered across g commands until another pldapaclng command is typed. Note tha- ,he
grid spacing and box alignment are independent.

" - & -

9. Basle Cel Commands . .

The painting facilities described above allow you to paint pictures (cells) on the various

mask layers. The cell commands described in this section allow you to save designs on disk ".nd

retrieve them later for further edits. These commands also permit to you to compose cells

hierarchically into larger systems.

A cell is just a piece of the design that can be stored and retrieved by name. A separate

disk file is used to hold the contents of each cell. At any given time in Caesar you are editing one

cell; it is called the edit cel. The name (if any) and bounding box for the edit cell are displayed
in the upper portion of the text screen. The bounding box is specified in terms of the x- and y-
coordinates of its lower left corner and its x- and y-dimensions, in the same way as the box and

current view.
To save the cell being edited, type the long command

navieel <name>

This will change the name of the edit cell to <name> and write it out on disk in a file named

<name>.cs. If <name> isn't specified, then the cell will be written to the file from which it
was originally read. NOTEs Caesar does not have any auto-save or checkpoint facilities.

*O It is prudent to save cells perlodlealla during long edits to safeguard against system
crashes.

To edit a different cell without restarting Caesar, the command

Ssdlteeli <name>

should be typed. This command destroys al the information related to the current cell and reini-

tializes the system to edit cell <name>. It will expect to find a file named <name>.ca contain-
ing the description of the cell. If the current cell has been modified since the last time it was
written, Caesar will warn you and ask you if you wish to continue anyway. If you type 'yes' then
the changed version of the cell will be lost. If you type 'no' or carriage return, then Caesar will

% 8.

-8-'



Etiting VLSI Circuits with Caesar Narch 22. 1983

give you a chance to save anything that has changed (see the twriteall command in Section 12
for details).

To include an existing cell as a subcell of a new cell, edit the new cell and type the com-
mand

'getee <name>

Caesar will look on disk for a file named <name>. ca and will make that file a subcell of the edit
cell. The paint of the subcell will appear on the graphics screen, and the subcell will be posi-
tioned such that the lower-left comer of its bounding box coincides with the lower-left corner of
the box. The :getcell command causes the cell which is gotten to become the current cell. Its
name and bounding box will then appear in the upper portion of the text screen. Most of the fol-
lowing commands operate on the current cell.

When a cell contains subcells, the subcells may appear in either of two ways. Most often,
subcells will appear in bounding box, or unexpanded, form, in which case the subcell is displayed as
a dark rectangle just large enough to contain all the components of the subceli. The mask designs
painted as part of the subeeld will not be shown, nor will the child's subcells, but the cell's name
will be displayed in the upper half of its bounding box. The second form for subcells is expanded
form. In expanded form, the bounding box of the subeell is not displayed. Instead, all of the cell's
components (paint and expanded or unexpanded subsubeells) are shown. To modify the display
mode of the current cell so that only its bounding box and name are displayed, type the short

4l command e. To expand the cell again, type C.

When one cell is included in another using the tgetell command, Caesar does not copy
information; it just stores in the parent a pointer to the child cell's file. If the child cell is edited,
the new contents will appear in the parent cell the next time the parent is edited. Each parent
cell maintains a guess about the bounding box for its children so that the definitions of the chil-

- - dren need not be read in until they are expanded (this speeds up the editing of large designs).
However, if the child has been changed then the bounding box as displayed in the parent may be
incorrect. The guess will be corrected the next time the child cell is expanded.

To change the current cell, position the croshair inside the cell you wish to select, then
push the top (yellow) button on the puck. Of all the cells that contain the crosshair, Caesar will
select the one whose lower-left corner is closest to the croshair. If a child cell has the same
lower-left corner as its parent then the child's corner is consdered to be slightly inside the comer
of the parent. If two unrelated cells have the same corner, the choice between them will be made
randomly. It is not possible to "Ind" the edit cell. Once a cell has been found, information for
the new current cell will appear in the text display and the box will be changed to coincide with

%. the botr2ding box for the selected cell. To select the parent of the current cell, press the yellow
button again without moving the croeshair. This may be repeated many times to step up through
the cell hierarchy.

To reposition the current cell, type the long command

:moweveU <keyword>

where <keyword> is one of "byposition", or "bysize". If <keyword> is "byposition" or is
omitted, then the cell is moved so that its lower-left corner coincides with the lower-left corner of
the box. If <keyword> is "bysize" then the cell is displaced by the x- and y-dimensions of the
box. Thus, what used to be at the lower-left (fixed) comer of the box will now be at the upper-
right (variable) corner. This is especially useful for making fine adjustments on a large cell whose
lower-left comer isn't on the screen.

The

seopyen

command makes a copy of the current cell and positions it at the lower left corner of the box (as
explained above for the getcel command, only a pointer to the subcell's file is copied). The
copy is made the current cell. The

-9- !I



Editing VLSI Circuits with Caesar Nrch 22. 19S

:upsldedown

command will flip the current cell upside down by mirroring its contents about a horizontal line.
The

sideways

command flips the current cell sideways by mirroring its contents about a vertical line. The

:cloekwls <degrees>

long command will rotate the current cell clockwise by the nearest multiple of 90 degrees less
than or equal to <degrees>. If <degrees> isn't specified, then the cell is rotated 0 degrees
clockwise. Any of the cupaldedown, mideways, or :clockwlse commands may be followed by a
"y": this causes the action to be performed on the yank buffer rather than the current cell. The
long command

tdeleteceli

will ielete the current cell (i.e. it removes the use of that cell from the edit cell; it does not affect
the disk file containing the cell).

It's important to remember that at any one time you are editing one and only one cell. The
thing;s that you can change are the edit cell's paint, and the ways in which subcells are used in
the edit cell. You are not permitted to make any modifications to the contents of subcells. Thus,
you :annot erase paint in children, nor can you move a grandchild cell inside a child cell.

10. Cells and Painting

There are several commands that manipulate both subcells and paint, or turn one into the
othe-'. For purposes of the erase, ryank, and :put commands, subcells may be thought of as a
layei Jabbreviation 'S') just like the mask layers or labels. For example, :erase S will delete all A"
subc lls that intersect the box, and -yank +S will yank all the visible layers and subcells too.
Subcells are never included in ierase, :yank, and :put unless you specify them explicitly. Furth-
ermcre, yank treats expanded and unexpanded subcells differently. In Iyank S, only unex-
panded subcells will be yanked. If a cell is expanded then Caesar assumes you want to yank the
pain; of the subcell, rather than the subcell itself. In :eras, subcells are deleted whether or not
they are expanded. This distinction is a bit confusing but seems to do the right things in prac-
tice.

As mentioned above, -yank will grab all paint underneath the box, regardless of which cells
contain the paint. Thus you can turn a subeell into paint by yanking its contents, deleting the
subeeil, and putting the paint back again. As a convenience, Caesar provides the long command

:ycel <name>

which does just that. If <name> isn't specified, this command performs exactly the sequence of
operations listed above: it sets the box to the bounding box of the current cell. expands the cell
if it isn't already expanded, yanks all the paint and labels of the cell, deletes the cell, and puts
the paint and labels back into the edit cell. If <name> is specified, then the indicated cell is
first read from disk and positioned at the box, just as if :get <name> had been typed. Since it
collapses the cell hierarchy, I don't recommend using sycell except for very small things such as
contacts or transistors.

Caesar also provides a command to turn paint into a cell. The command
*ysave <n2&e>.

causes all of the information in the yank buffer, including paint, labels, and subcells, to be writtento disk as a cell named <mame>.ca. .-

-10-

I-: :: . .. ..... . ... . . . . . . . .



Editing VLSI Circuits with Caesar March 22, 1983

11. Arrays

Arrays provide an efficient mechanism for specifying and m%nipulating groups of identical
cells. The long, command

array <zulu.> <Y6130>

will turn the current cell an array of cells. The array will be a rectangular one containing
<xsise> instances in the x-direction and <ysize> instances in the y-direction. The instances
will be spaced in x and y according to the x- and y-dimensions of the box at the time the anray
command is issued. Once an array has been created, any manipulation of any element in the t
array will affect the entire array. For example, if one element is expanded, then all elements are
expanded. Similarly, the entire array must be moved, unexpanded, and copied as a whole. The
array command may be typed when the current cell is an element of an array. When this hap-
pens the current array is replaced by a new array such that the lower-left corners of the old and
new arrays coincide.

12. Subedlta
When designing a large circuit with many subeells, subeells often muust be changed in ways

that depends on their usage in the chip as a whole (for example, a subcell might have to be
modified to connect properly to its neighbors). To facilitate making such changes, Caesar pro-
vides a subedit facility that allows cells to be edited in ceontext. The long command

mubedit
causes a subedit to be entered by making the current cell the edit cell. During a subedit, the

child cell is displayed just as it appears in the larger cell (e.g. rotated or as an array), and all of
the paint and other children of the larger cell continue to be displayed on the screen. During a
subedit, as always. nly the edit cell may be modified. It is impossible to select any information
except that in the edit cell and the tree of subcells that it heads. To return from a subedit, type
the long command

nvturn

Subedits may be ne.ited. The term root ceil refers to the topmost cell in the cel hierarchy, which
differs from the edit cell if a subedit is in progres.

During a subelit the bounding box of the edit cell may change, and Caesar will automati-
cally propagate this change to all uses of that cell, continuing up through the cell hierarchy until
all bounding boxes are correct. This may mean that many cells need to be written to disk in
order to reflect the changes. The long command

rw teau

will scan the database for all fies that have changed since the last time they were written. For
,* each cell that has changed, you are asked for one of three responses: "write" to write the cell to

disk; "skip" to go on without writing this cell; or "abort" to return to command mode immedi-
ately. The wrlteali command is invoked automatically as part of several other commands such

": as mdltcell.

1. Marks and the Box Stack

The box gets used for many different functions, some of which conflict with each other. For
example, if a long rectangle is to be painted to connect distant points, the most convenient way
to do this is a) set the view to the area where the left end of the rectangle will be, and put the
box's lower-left corner at the starting point for the rectangle; b) move the view to where the other
end of the rectangle will be; c) set the box's upper-right corner and paint the rectangle. Unfor-
tunately, it may be necessary to use the box to change the view; thus the position of the lower-

''.,;. . . . .. .. -...- '. - ,.... ,..,. .. ... .... . :



Editing VLSI Circuits with Caesar .,arch 22. 1983

left corner of the rectangle will be lost. Marks and the box stack are intended to facilitate such
things as the drawing of long connections.

Caesar allows up to 26 user-settable marks to be stored during an editing session. Each
mark is just a rectangle. To store a mark, type the command

:mark <markl> <znark2>

<markl> must be a single lower-ease letter. The box will be stored in the indicated mark. If
<mark2> is specified, then after setting <markl> the box is set to the rectangle that is in
<mark'>. If <mak2> isn't specified, then the box isn't changed.

When retrieving a mark, either in the :mar'k command or any of the additional commands
discussed below, either a lower-case letter may be typed to specify a user mark, or one of several
upper-case letters may be typed to specify a ugttem mark System marks are defined in Table 2.
Instead of a single letter, it is also permissible to type either two or four integers, separated by
spaces. This is referred to as an abeol-ac mark. The first two integers specify the x- and y-
coordinates of the lower-left corner of a rectangle, and the sccond two integers specify the x- and
y-sizes. If the last two integers aren't specified then the rectangle is assumed to have zero size.

C - The bounding box of the current cell.
E - The bounding box of the edit cell.
R - The bounding box of the root cell.
V - The current view.
P - The pr vious view.

Table 2. The system marks.

Although at any given time only cue box is visible, Caesar maintains internally a stack of
boxes. The current box is at the top of this stack. To save the current box on the stack, issue
the lcng comm~nd

:pwashboz < mark>

This command saves the current box on the stack, and provides a new one to be manipulated. If
<mark> is present. it is a mark that is made the new box, and may be a user mark. system
mark, or absolute mark. If <mark> isn't specified then the new box is made the same as the old
one.

The command

zpopbox

retrieves the last box pushed onto the stack by discarding the current box and making the one
underneath it on the box stack the current box. If the command is typed as

popbox< mark>

Then the current box is discarded and a new current box, indicated by the given mark, replaces it
at the top of the box stack.

Marks may be used in the long command

view <mark>

This command will set the current view to contain the area indicated by <mark>. <mark>
may be a user mark, system mark, or absolute mark, and defaults to "R".

9. .

+.........,. .S -.

. . . . . . . . . .



, , - - V -.- r ,'.' r r .wr -- . - - . - . .r r - -r--r- - - Vr. r - r

j

Editing VLSI Circuits with Caesar .arch .'2.1. 1983

.. 14. Searchin
To assist you in finding a label or subcell of a given name, Caesar provides the long com-

mand

search <regexp>

where <regexp> is a regular expression in the same form as those suitable for ed (see the manual
entry for ed (1) for details). The :seareh command clears the box stack, then scans all of the
information in the database that lies underneath the box (in subedits only information in the sub-
tree of the edit cell is examined). For each label that matches <regexp> the label's box is
pushed onto the top of the box stack and a message is output on the termir, M. Similarly, for each
cell whose name matches <regexp> the cell's bounding box is pushed onto the box stack and a
message is output. After the command has finished, the various matches can be found merely by
popping them from the box stack. For example, merch the will find all labels and cells that
intersect the box and contain the string "the".

15. Fienames and Paths

In order to make it easy to identify bow files are to be used, and in order to prevent
accidental misuse of files, Caesar uses a standard set of file name extensions. For example, it
expects all files that are edited using Caesar to have aames ending in the characters ".ca". By
convention, all colormap files use a monitor type as extension, and all CIF files have the extension
-.cir. Caesar doesn't absolutely require you to abide by these conventions, but it makes it easy
for you to do so and difficult for you to do otherwise. For example, in the etcolU command,
Caesar will first try to get the cell by appending ".ca" to the name you type. If this fails, then it
will try the unextended name. Similar things happen for colormap and CIF files; Caesar will first
append the standard extension and will only try the unextended name if the extended one doesn't
work.

There is one way to get around the default xtecsions. If a name that you supply contains
a "." character, then Caesar will assume that you have your own (crazy) scheme for name exten-
sions and will not tack on any of its own.

Caesar also implements a search path mechanism that makes it easier to work on large
designs where the component files are spread over many directories. The search path contains the
names of one or more directories that Caesar will examine in order when opening files for reading.
Whenever Caesar attempts to open a file for reading, it searches for the file in each of the direc-
tories in the path until the open succeeds. If no directory in the path contains the file, Caesar
will make one last attempt by looking in a system library directory. On the VAX'es at Berkeley,
the library area is cad/caesar/lib. The library directory contains standard technology and color
map files, shifteell, and other files. If the original file name begins with a "" or "/" then the
path mechanism isn't used.

The initial search path is set to "." (the working directory) when Caesar begins execution,
unles overridden by the -p switch or a .caesar file. To change the path once Caesar is running,
type the long command

tpath <strInS>

where <string> contains one or more directory names separated by blanks or colons. From then
on, Caesar will search for files by looking in each of the directories in string in the order of their
appearance in <string>. Directories may be specified using the "" notation, and "::" is
equivalent to ":.:". Typing Spath with no parameters will cause Caesar to print out the current
search path. Paths may also be specified when Caesar is invoked by using the -p<path> switch,
with <path> having the same format as <string> above.

The search path mechanism is only used for reading files. When writing out files, one of
two mechanisms is used. Normally, files are written into the current directory unless the file
name starts with '" or The one exception to this rule occurs when maveceU is invoked

.13

-- - 13-

%' ~-



Editing VLSI Circuits with Caesar March 22, 1983

without specifying a file name. In this case, Caesar will write try to write the cell back to the --

place from which it read it, regardless of where that may be.

16. Macros
Caesar has a very simple facility for defining macros. A macro is just a short command

defined by the user, such that whenever a particular character is typed as a short command, a
long command is executed instead. The long command

:macwo <character> <long command>

will set up a macro such that <long command> is executed whenever <character> is typed.
For example, the command

:macro I paint p\; box up 1\; box left 1

defines a new short command I that will paint polysilicon and move the box diagonally up and to
the left one unit. The backslashes are be used to prevent the semi-colons from terminating the
macro definition (without the backslashes, the ccmmad would have defined a macro that just
paints; then the box moving commands would have been executed). Macros )verride the system
definitions of short commands. To remove a particular macro and res*ore th,! system definition,
type

*macro <letter>

To remove all macro definitions, type

smacro

Note that macros may include short -mmands by using the single-quote notation defined in
Section 3. Thus,

:macro I ',\; box up 1\; box left 1

is the same as the macro definition in the te' itus pragraph except that it :anks all the layers
visible underneath the crosshair. When short commands are invoked using th: single-quote nota-
tion, macro expansion is NOT performed. Thus in the above example, any miacro definition for
the short command a is ignored.

17. Command Flies

The command

wource <file>

will read <file> and execute each line of the dile as a long command. If the last character of a
line is a backslash, then the backslash is removed and the line is joined to the following line.
When Caesar starts up it attempts to read two command files. First, it looks for a file named
caesar in the home directory of the user, if this file exists then it is processed as a command file.

Then Caesar attempts to read .ceusar in the current directory. The startup command files are
useful for setting paths, technologies, and macros.

L CIU Output

The format in which Caesar stores its cells on disk is not Caltech Intermediate Form, the
standard representation used to fabricate chips. However, the long command

sUlf-eblpx <name> <scale>

will cause Caesar to write out in CIF format a file that describes the edit cell. The parameters

- 14-



Editing VLSI Circuits with Caesar March 22. 1983

* and switches may be specified in any order and are all optional. <name> is the name of a file in
which to write the CIF (a cif extension is appended automatically). If <name> is not specified,
then the name of the edit cell is used by default. <scale> is a number that is used for conver-
sion from Caesar units (lambdas) to CIF units (centimicrons); it specifies how many centimicrons L
there are in one lambda. If <scale> is not specified then it defaults to 200 (i.e. lambda - 2
microns).

Warning: if your design is made on a 1/2-lambda grid, then round-off errors will occur in
the CIF file if the scale is not an even multiple of 4 centimicrons. If your design is entirely on a
lambda grid, then round-off errors will occur if the scale is not an even multiple of 2 centimicrons.
When round-off errors occur, pieces of the design may appear to move by as much as one centimi-
cro. Although this movement will not cause any noticeable effect during fabrication, it may
cause CIF-based analysis tools to misinterpret the circuit. To be safe, always use a scale factor
that is a multiple of 4 centimicrons, e.g. for lambda - 2.5 microns, specify a scale of 252 or 260.

The CIF information may be used for many different purposes: a) for getting hardcopy plots
of the circuit; b) for input to circuit extractors, design rule checkers, and simulators; and c) for
fabricating chips. The switches control what information is to be output into the CIF file, accord-
ing to the way the CIF file will be used. As many as four different kinds of information may be
output in the CIF file:

Silicon What actually gets fabricated: rectangles specifying the mask layers.

Bounding Boxes When CIF representation is being used as a means for getting eheckplots,
Caesar can output commands that cause unexpanded cells to be plotted in
bounding box form. This is done by outputting vectors ("OV" user exten-
sion) and text ("2" user extension) so that a bounding box will appear
along with the cell's name and id when the CIF file is plotted. This makes
it possible to get block diagrams of circuits.

Labels F'r each label in an expanded cell, Caesar will output vectors and text to
make the label appear in plots just as it appears on the screen (except that
labels that appear as crosses on the screen will appear as dots in the plot).
This feature is only useful for getting hardcopy.

Points CIF provides the "94" construct to give names to various points on the
masks. Caesar will generate "94" commands for each label. These com-
mands are used by several of the circuit extraction and simulation pro-
grams.

If no switches are specified, Caesar will output none of the above information except silicon.
Furthermore, cells will implicitly be expanded as CIF is being output so that all the silicon in the
edit cell and its descendants will appear in the CIF output. The -b, -I, and -p switches will enable
bounding boxes, labels, and points, respectively, and the -s switch will disable silicon output. If
the -x switch is specified, then cells will not be automatically expanded: silicon will appear only
for cells that are currently expanded. This switch can be used in conjunction with the -b switch
to get block diagrams. Some useful combinations of switches are: a) to get a plot of things just
as they appear on the screen, use sef -xbi; to generate CIF files suitable for manufacturing, use
sewt, to get CIF files for circuit extraction and/or simulation, use :elf -p.

1g. Non-Interactive Use of Castsn

If the -a switch is present on the command line, then Caesar will execute in non-interactive mode.
In this mode, it does not use a color display at all, nor does it display the normal menus and
statistics on the text display. Instead, it merely reads long commands from its standard input
(the single-quote notation described in Section 3 can be used to invoke short commands). This
mode is useful for running the sew command in background, for example. If an end-of-file is
encountered on the standard input when in non-interactive mode, Caesar exits immediately,
without saving anything.

- 15-
-is

% W.

, ,-.-:,-.... ... .,,.,.-...-..- .:.:.-.-.-.. .---.. .-.. :.-. .-:, .... :.-....:.:.:....,,,. ;. ...-C.: ... :.. 7.-. ..-. ... :.... .



Editing \ SI Circuits with Caesar March .2. 1S3

20. Identifiers
This command is not well supported, and hence is not likely to be very useful.

In addition to its name, which refers to the file containing its definition, each cell may be
given an instance identifier, or ID. The ID distinguishes a subcell from all the other children of its
parent, particularly those siblings that share the same definition file. Caesar does not currently
use the ID information and does not output it to CIF files, so it serves only to document the cir-
cuit. At some future date additional design tools may take advantage of the ID information. To
give a cell an instance identifier, type the long command

ddentlfycelI <Id>

The identifier will become the instance identifier for the current cell. and will appear in the lower
half of the cell's bounding box when the cell is unexpanded. The same identifiet may not be used
in two subcells of the same parent.

When an element of an array is given an identifier, Caesar will give IDs to all the elements
of the array by taking the name and appending "(x,yJ" where x and y are ,he indices of the 6.-
meet within the array. Normally, the indices start from 0 at the lower-left corner. To change
this, the array should be generated using the command

varray <xl> <x2> <yl> <y2>

This command generates an array with elements indexed from <xl> to <x2> in the x-
direction and from <yl> to <y2> in the y-direction.

21. Miscellaneous Commands

Caesar can communicate with the Lyra layout rule checker. To invoke Lyra. first use the
box to select the area you wish to check. Then type

:lyra <ruleset>.

The parameter <ruleset> is optional and is passed to Lyra with the -r switch. If <rul.set> is
omitted, an appropriate rulest is picked based on the current technology. Dezga ule violations
returned by the layout rule checker are displayed as labels in the edit cell.

The short command . (period) causes the most recent long command to be repeated.

The long command

causes Caesar to cease execution and return to the shell.

The long command

inset

will re-initialize the graphics display. This command is needed if the display should become
fouled up or if the sleeper job should die. First reset the color display. Make sure that a sleeper
job is still logged in, if necessary. Then invoke the :resea command.

A long command is provided whose function is equivalent to pressing a puck button. The
command syntax is

ibutton <numba,> <x> <y>

This long command simulates the pressing of button <number> at the screen location given by

<x> and <y> (is pixel coordinates). <number> must be 0, 1, 2, or 3, and the coordinates
must lie on the screen. If <x> and <y> aren't specified, then the crosshair position is used.
This command is useful for macros and for displays without buttons on their
puck/mouse/joystick.

- -16-

,: - ""' '. ,..,... ".,*. ... ~- . -: , - -" . . j . ,. . .. . -- '.-\ - ... *.. •.,...' .-. ., .... . . . . .- . . " . ." -'. "."-". .... .
% -. '-,' ',% '- ,,'.' -,'.', .- ..-- " '-' "." ;-" ' ". -' ¢,- , -" " - -. ."-'-. .".. . .".-'. ... .'. .".'. .... .'.. . .''' -"



Editing VLSI Circuits with Caesar March 22. iOs,

A new technology may be loaded with the long command
• ".technology7 <file>

where <file> is the name of a technology file (see Section 22). A default ".tech" extension is
supplied. This command changes Caesar's current technology, regardless of the technology of the
cells being edited, and may thereby produce bizarre and undesirable effects (for example, if the
existing cells ae saved on disk, they will be marked with the new technology). Normally .tech-
nology should only be invoked when the edit cell is null.

The short command ^L (control-L) causes the graphics display to be erased and redrawn,
and the command I causes both the text and graphics displays to be redrawn. These commands
shouldn't be necessary very often. Nonetheless, one or the other of the screens will occasionally
get trashed, and this provides a recovery mechanism.

X is an "expand all" command. Any cell that intersects the box is expanded, then all the
subcells that intersect the box are expanded, and so on until there is nothing but paint left under.
neath the box. The short command x is the inverse of X: all of the cells that intersect the box,
but do not completely contain the box, are unexpanded to be drawn in bounding box form.

The long command

:peek <layers>

provides another form of "expand all". It causes all the paint lying underneath the box to be
displayed, including paint in unexpanded cells. However, the expanded/unexpanded state of cells
is not changed, so the effects of the command are temporary: the next time the area is redrawn,
information will appear as it did before the peek command. <layers> has the same format as
in the :erase command. Only the layers given by <layers> are displayed (if <layers> isn't
specified then all visible layers are shown) and only the area underneath the box is affected. The
.peek command is somewhat faster than X and x since it doesn't require any modifications to the
database and involves only the area underneath the box. Information drawn by peek is not
"officially" visible and hence is ignored by commands such as yank and :fill.

The long command

ilushcell

simply unloads the current cell from main memory This command hs two uses. First, if there
are several people using different workstations to edit different cells of the same chip at the same
time, Mushcel provides a mechanism to pass back and forth updated versions. If one person
changes a cell and saves it on disk, then the other person can see the latest version by flushing his
current version. Thus it isn't necessary to leave Caesar and restart. Flushing is also useful if you
edit a cell and then decide that you don't want the edits after all. .fushceU will throw away the
changes and reload the disk version.

The long command

usagp <filename>

can be used to figure out which files in your directory area are part of a design. The rusage com-
mand will write out in <filename> a list of all files containing definitions that are part of the cell
hierarchy.

Caesar is still undergoing development, so you may stumble across bugs and unpleasant
features as you use it. Hopefully this won't happen too often, but when it does you can use the

qpwp.

command to give feedback to whomever is maintaining the system. When you type Igpip the
mail program is run and Caesar will supply the address of the system maintainer. Just type in
your message as you would if you had run mail yourself. Please put the word "Caesar" in the

."." subject or first line. Feel free to suggest enhancements as well as report problems. When you
have typed in the message, type *D and control will return to Caesar.

-17-

-% % -



Editing VLSI Circuits with Caesar March "2. 1G83

22. Technologlei
TAi section is intended for system maintainers only.

Caesar versions 6 and later are technology independent: they permit you to define new
technologies of your own design. For Caesar's purposes, technology information merely contains
layer names and information about how to display them. A technology is defined in a technology
file, which usually has a ".tech" extension. For example, the standard NMOS technology is
defined in a file called "nmos.tech" in the system library. To create a new technology or an
extended version of an existing technology you need only create a new technology file. Table 3
contains the Berkeley technology file for NMOS.

nmos
nmos
polysilicon pr 0 solid 1
L NP
diffusion dg 0 solid 2
L ND
metal mb 0 solid 4
L NM
implant iy 0 solid 10

iL LNI
cut c 377 cross 40
L NC
overglass o 377 lI-ur 41
L NG
errors e 0 solid 42
L NZ 9
buriedcontact x 0 stipple 20
L NB
210 42 210 42 210 42 210 42

Table 3. The Berkeley NMOS technology file.

The first line of each technology file is the name of the technology e.g. "amos". Every cell
is also marked with a technology name; the technology names in the ca and tech files must
agree. Caesar does not permit cells of more than one technology to be edited at one time. The
second line of the technology file contains the name of the color map to be used for that technol-
ogy. When looking up the color map file, Caesar will supply the monitor type as extension (see
Section 23 for a detailed discussion of color maps).

Lines after the first two are grouped in pairs or triplets; each group describes one mask
layer. There may be up to 18 layers. The order of the layers makes no difference. The first line
of each group has the syntax

<longnam*> <shortnames> <outlinestyle> <fillstyle> <layer>.

<longname> is a descriptive name for the layer, and is used by Caesar to identify mask layers in
cell files. <longname> must not be either "labels" or "end". <shortnames> consists of one or
more characters that will be used as abbreviations for the layer in commands such as tera" and
tyank. <shortnames> entries for all layers must be distinct, and must not repeat any of the
predefined layer names (those in the lower half of Table 1). <outlinestyle> and <Aillstyle>
describe how rectangles in the layer are to be displayed. Each rectangle is drawn in two stages:
first an outline is drawn, then the contents of the rectangle are filled. <outlinestyle> is an
eight-bit octal number whose bits give a pattern indicating how the outline is to be drawn. All
ones (377) means draw the outline as a solid line, zero means don't draw any outline at all, 30

5l -18-.

..-..-.-............-.-..-...............-..-.-.. --.. .'...-.-... ..-....-. ,...... -....- ,-, --.';..• -- ." .-. ,-., -. .. .,-.-. ,. -"..--... .".-'.



Editing NILSI Circuits with Caesar March 22. 1983

means draw a dashed line, 252 means draw a dotted line, and so on. <fillstyle> ind''-ates how
the box is to be filled, and must be one of the keywords listed in Table 4. The solid style is the
most efficient one. <layer> is an octal layer number, which will be explained below. The
second line for each layer contains the CIF command used to switch to that layer. This informa.
tiom is used when generating CIF files. If the <illstyle> is "stipple", then there is a third line in
the group (after the CIF command fine) that contains eight octal numbers giving an 8-by-8 array
of ones and zeroes used for stippling that layer. Stippling is only available on Chromatics.
AED767, and specially microcoded AED512 displays (display type 'UCB512*)at present.

empty Don't draw anything inside the rectangle.
solid Fill the rectangle with solid color.
cross Draw diagonal lines between opposite corners.
horizontal Cross-hatch with horizontal lines.
vertical Cross-hatch with vertical lines.
li-ur Cross-hatch with lines running from

lower left to upper right.
uI-lr Cross-hatch with lines running from

upper left to lower right.
stipple Use stipple pattern given in third line.

Table 4. Fill styles for technology fles.

The <layer> entry must be an octal number that. is either 1, 2, 4. 10, .0, or between 40
and 52 inclusive. No two <layer> entries may be the same. <layer> determines whether or
not the corresponding mask layer is opaque or transpareil. The distinction between transparent
and opaque layers is necessary because the color displays don't have enough memory to allocate a
separate bit plane for each mask layer. Transparent layers are those with <layer> values 0-4.
They have two nice properties: first, it is possible to see transparent layers even when they lie
underneath other transparent layers; second, Caesar can perform screen operations on tran-
sparent layers more efficiently than for opaque layers. Opaque layers have the property that they
blot out everything underneath them. If one opaque layer is colored at a point, it is impossible to
see transparent layers or other opaque layers underneath it. Higher-numbered opaque layers blot
out lower-numbered opaque layers. Cross-hatching was implemented for use with opaque layers:
only where the outline or cross-hatching is drawn does other information get blotted out. A good
rule of thumb when assigning layer numbers is to make the densest and most frequently manipu-
lated layers transparent.

Cells edited under one technology can be edited under another technology with no side
effects as long as the two technologies agree on the <longname> values for each mask layer and
the two technology files have the same first line. However, strange things may happen if you
switch technologies while a cell is loaded into Caesar: the layers of the old technology will be
mapped into those of the new technology according to their <layer> values, rather than their
<longname> values. This will generally NOT produce the desired elects, although it can be
used to move information from one layer to another. Normally, the cell to be edited should be
reloaded (using the :edltceli command) after a switch of technology.

C.
23. Color Maps

This section is intended for system maintainers only.

Color maps are tables that indicate what color to display for each of the various layers.
Caesar allows you to change the color choices and to save your own color map files. Each color is

-.. specified by means of red, green, and blue intensities that may range from 0 to 255. To read out
the current color values for a particular layer or layer combination, type the command

- 19-



Editing VLSI Circuits with Caesar March 2'2, 1983

:colormap <layer>

where <layer> is any combination of the layer mnemonics from Table I (if you are using a
different technolog then the mask layer mnemonics will be different). For example, :colormap
p will print out the red, green, and blue intensities for the color that is displayed where polysici-
Ion appears by itself, and wolormap pm will print out the intensities for the color used to
represent overlaps between polysilicon and metal. The command

:colormap <layer> <red> <green> <blue>

will set the colors for <layer> to those given. Itf the first character of <layer> is a ""', then
the indicated colors are stored for oi layer combinations that contain the selected layers. For
example. scolormap *X 256 255 255 will cause the color white to be display,.d anywhere that
the box appears, no matter what other layers may be present. The layer may a.so be specified as
an octal number.

There is a different color for each possible combination of transparent layers. In existing
color maps, the colors are chosen to make certain layers appear on top of other li yers. For exam.
pie, the colormap entry for "pm" is different from the entries for "p" and for "m', and is
intended to make the metal layer appear on top of the polysilicon layer while still permitting
underlying details to be distinguished. There is only one color table entry for e:ch opaque entry:
in NMOS, for example, "cm", "cp", and "*C" 311 refer to a single entry. The 13, S, and I layers
are all the same as far as the color map is concerned: changing any one of them will change all of
them. However, the G/S/l layer is transparent with respect to the mask layers: a separate color
exists for each combination of mask layer and G/S/I. The box layer is also transparent with
respect to mask layers and the grid/subcell/la6,i layer. Layer name "B" is tsed to select the
color of the background. This layer is blotted out by any of the other l.vers.

Modified colormaps may be saved on disk and retrieved. The command

tesave <name>

causes the current colormap values to be saved in file <name>. Caesar uses the monitor type as
extension to the name. Thus, if you are wor.kinq on a monitor of type "stc ", the command
":csave cmos-pw" will create a file named "cmos-pw.std". The command

scload <name>

causes Caesar to reload its colormap from the named file, once again using the monitor type as
extension.

24. Locating the Correct Display
This section is intended for system maintainer. only.

When Caesar starts up, it tries to figure out what kind of display it should use by consulting
the displays file. At Berkeley, the displays file is located in "cad/lib/displays. Each line in the
displays file describes one workstation and contains up to five strings. The first string gives the
file name of the text terminal of the workstation. The second string gives the file name of the
device to use for I/O to and from the color display. The third string gives the type of monitor
attached to the display. The fourth string gives the type of display, and the fifth string gives the
file name to use for reading characters from the display's tablet. Table 5 lists the display types
understood by all versions of Caesar. Some sites may also have support for display types not
listed. The "display type" indicates what kind of electronics is used to hold the raster memory,
e.g. "AEDSl2" or "OmegaI40". The "monitor type" indicates the type of color monitor that is
attached to the display. The monitor type is used to select the right color map to use (phosphors
on different monitors may be slightly different and hence require different color maps). At Berke-
ley we use several different types of monitors with different color characteristics. Caesar under-
stand two general kinds of monitors: "std" and "pale". The monitor type is used by Caesar to
select a color map that will make your circuits look nice on that particular monitor. The "std"

-20-



Editing VLSI Circuits with Caesar March 22. 1983

colormaps work well with most monitors. Some monitors with long-persistence phosphors have a

blue phosphor that is especially pale. With these monitors the "pale" colormaps work well. If
you have a monitor with unusual colors, you'll probably have to make a new colormap by modify-
ing one of the standard maps. If any of the strings are omitted, default values are used. In the
case of the tablet file, the default is to use the same file as for display output.

Values from the displays file are overriden by command line switches.

Display Type Manufacturer Notes

AED512 Adv. Electr. Design
UCB512 Adv. Electr. Design (AED5I2 with UCB microcode for stipples)
AED767 Adv. Electr. Design (This display type can also be

used for some Jupiter displays)
AED640 Adv. Electr. Design (AED767 configured as 640x483 pixels)

Omega440 Metheus (Courtesy Metheus Corp.)
R9400 Ramtek (Courtesy Gary Bishop, UNC-Chapel Hill)
Vectrix Vectrix (Courtesy Gary Bishop and Eric Vook,

UNC-Chapel Hill)

Chr79CO Chromatics (Courtesy Dan Schuh, Univ. Wise.)

Table 5. Supported display types.

25. Known Bugs and QuIks

1. The cell expinsion facilities have a quirk stemming from the fact that if the same subcell
is used in two places Caesar only keeps a single copy of the definition of the cell in order to save
memory space. What this means is that if you are editing a cell with two identical child cells,

each with a child of its own, then if one of the grandchildren is expanded the other grandchild
will be eApanded as well. This quirk only affects grandchildren and more distant descendants of
the edit cell: childrett may be expanded and unexpanded independently.

2. If Caesar should crash, the text terminal will be left in a weird state. To escape this
state, type "reset" followed by linefeed (control-J), NOT carriage return.

3. Caesar expects that label text will fall within the bounding boxes of the cells they belong

to. This results in much greater efficiency when moving cells around, since Caesar only worries
about the area inside the cells' bounding boxes. However, if label text falls outside the bounding
box, it will not be properly erased when the cell is moved. To clean up the screen it will be

necessary to type 'L.

4. Caesar handles interrupts (e.g. rubout) but in a stilted fashion. When the interrupt key is
typed, all searches in progress will be stopped immediately, but no other computations are

affected. This will escape from long redisplays and finds, but it may still take a while for Caesar
to finish whatever else it was doing.

3N

'p4



--. ' b- - '. ' - • . "I IC "5.V V ". 7' - 7- "rK.- . K. ' --- 17w-, - - -

Standard Cell Library Guide

UWINW VLSI Consortium
University of Washington

Seattle, WA 98195

1. latroductiom
Various pre-generated cells are made available to the layout designer for use in custom designs laid
out using cfl or casm. The various cells are to be used with the particular technology under which
they are listed. The designer should avoid using the same names of these symbols when designing his
own symbols.

1.1. aMOS Cefl Ubrary
These cells were provided courtesy of MOSIS, and as such correspond to MOSIS specifications for
fabrication. They are current as of April 1984. For more information on the pads and padframes,
refer to the MOSIS document nmodoc included in the cells' source directory.

1.1.1. Padframes
Pin I of these padframes is connected to the substrate, and therefore should not be used for a
signal line.

28p23z34 - 28 pin frame with dimensions of 2300 by 3400 microns ;
284s34 - 28 pin frame with dimensions of 4600 by 3400 microns ;
40p 4634 -40 pin frame with dimensions of 4600 by 3400 microns,
40p4648 - 40 pin frame with dimensions of 4600 by 6800 microns ;
*"p69zE - 40 pin frame with dimensions of 6900 by 6800 microns ;
64p46u 6 - 64 pin frame with dimensions of 4600 by 6800 microns ;
64p6d96 - 64 pin frame with dimensions of 6900 by 6800 microns ;
64 p7992 - 64 pin frame with dimensions of 7900 by 9200 microns ;
84p69xz68 - 84 pin frame with dimensions of 6900 by 6800 microns ;
84p7992 - 84 pin frame with dimensions of 7900 by 9200 microns ;

1.1.2. Pads
The names of some of these cells have been shortened due to system limits on the length of
filenames. The MOSIS names are listed in parentheses with the renamed version ahead of them

-* in boldface.

PsdVdd - VDD pad;
PudGroand - GND pad;
Paia- Protected signal input pad;

S~ PudOt - Output pad;
* PuiClkO (PadClockedOut) - Clocked output pad;

PadMtata (PadTriState) - Tri-state input/output pad;
PsdClkBar (PadClockBar) - Two-phase non-overlapping clock-bar pad;

UW/NW VLSI Release 30 -1- 06/01184



.UW/NW VLSI Consortium Standard Cell Library Guide

1.2. CMOSPW Cell Library
These cells are intended for fabrication under the MOSIS 3 micron CMOS process "CBP2, and
correspond to MOSIS specifications. They do not use second poly or metal, and were laid out using
lambda = I micron. The pads and padframes are provided courtesy of Paul Bassett of the Mas-
sachusetts Institute of Technology. For a description of the differences between the three pad groups
covered below, as well as a more complete description of the individual pad drivers and padframes,

" see Appendix A on the 3-micron bulk cmos pads and padframes.

"1.2.1. Padframs

Pin 1 of these padframes is connected to the substrate and should not be used for a signal fine.

28p 46 34 - 28 pin padframe with dimensions of 4600 by 3400 microns;
40p46x8 - 40 pin padframe with dimensions of 4600 by 6800 microns;
40p69x68 - 40 pin padframe with dimensions of 6900 by 6800 microns;

699pUx - 64 pin padframe with dimensions of 6900 by 6800 microns;
64 p 2 - 64 pin padframe with dimensions of 7900 by 9200 microns;
84p7Mh92 - 84 pin padframe with dimensions of 7900 by 9200 microns;

1.2.2. Group 1 Pads

9' These pads are the largest of the three groups of CMOSPW pads provided, measuring 300 by 640
microns.

padlet - Output pad;
padlot-tt - TTL output pad;
padIts - Tristate pad;
padl - Input pad; ___

padibla - Buffered input pad;
*[ padbla-ttl - Buffered TTL input pad;

padig d - Ground pad;
padivdd - Vdd pad;
padlspace - Spacer pad for padframes;
padl- Complete group of the padl cells;

1.2.3. Group 2 Pads

This group has pads measuring 200 by 430 microns, and does not include any output pads.

pad2ila - Input pad;
pad2bln - Buffered input pad;
padlblm-ttl - Buffered TTL input pad;
pad2pd - Ground pad;
pad2vdd - Vdd pad;
pad-.pace - Spacer pad for padframes;
pad2 - Complete group of the pad2 cells;

*0 1.2.4. Group 3 Pads
Group 3 contains an only unbuffered input pad, with a Vdd and Ground pad, all being 200 by

--- 306 micron size.

.- pad31 - Input pad;
pad3gd - Ground pad;
pad3vdd- Vdd pad;
pad3spacs - Spacer pad for padframes;
pd3 - Complete group of the pad3 cells;

UW/NW VLSI Release 3 -2- 06/01)84

I' .o



UTW/NW VLSI Consortium Standard Cell Library Guide

* . 1.2j5. Mmscel§mne Cells
Refer to Appendix B for descriptions of symbols as well as testing information.

- Short guard ring (from MIT);
- Long guard ring (from MIT);

lav - Basic inverter;
nand2 - Two input nand gate;
und3 - Three input nand gate;
hand4 - Four input nand gate;
nor2 - Two input nor gate;
nor3 - Three input nor gate;
nor4 - Four input nor gate;
zor2 - Two input exclusive-or gate;
clklmv - Clocked inverter;
sd2bnv - Two input inverted selector;
datch - D Type latch;
dhatchr - D Type latch with reset;

.a,-~,

I UW/NW VLSI Release 3A) -3.- 06/01/84

'-.--.-.. .'.'-.-. '.. -. :. . . .... " " .'..-.- ." .. .. . .. ".-".. . . "."-.'.-*:' .*. .. *.* ." . .: -..-.. , -. , .° .. ','C-'""--



-V

Appendix A

CMOSPW PADS AND PADFRAMES

Thene pads arm intended for fabrication under the MOSIS 3 micron CMOS process 'CDPM2'.
They do not use second poly. They were laid out using lambda - 1 micron. They are provided
courtesy of Paul Bassett of the Massachusetts Institute of Technology.

UW/NW VLSI Releas 3.0 -. 06101/85



Appendix A UWINW VLSI Consortium

1. The Pad Types
The pads are divided into 3 groups. All of the pads in each group are compatible with the other
members of its group but the groups are not compatible with each other due to power bus mismatches.
Some of the pertinent properties of each of the groups are briefly discussed below followed by a brief
discussion of each of the pad types. Members of different groups that have the same function are
differentiated by a number in the name eg. padlin vs ped2in; since Group 1 has a compicte set of
pads, each type of pad will be discussed briefly only for that group. In particular, note that the pad2
and pad3 groups do not have the via and second layer metal layers over the pads required for the pro-
cess "CBPM2".

2. Group Ome
This group is the only complete group and the pads in this group are also the largest pads. All of the
pads are 300 x 640 microns. This size is dictated mostly by the size of driver transistors and the input
buffer stages on the output pads; however, the pads have been expanded somewhat to fit the pad-to-
pad spacings of the MOSIS standard padframes more closely. Two consequences of this are that the
pads could be made slightly smaller if this is desired or the spacings of the driver transistors could be
increased slightly more to provide some additional latchup protection. The input protection on all of
the input pads consists of a well resistor, approximately 20 x 20 microns, followed p+-to-substrate and
n+-to-well diodes providing additional clipping above Vdd and below Gnd, both diodes are approxi-
mately 15 z 15 microns. These pads have two Vdd buses and one Ground bus. The top Vdd bus is 60
microns wide and the bottom Vdd bus is 20 microns wide and has a 20 micron wide strip of n+
diffusion under it providing a guard ring to separate the pads from the internal circuitry, this guard
ring is only broken where the inputs and outputs to the pads cross it. The Ground bus which runs
through the middle of the pads is 74 microns wide. The input and output signal lines extend past the

-@q lower Vdd bus by 6 microns to allow connecting to them without design rule violations or
modifications to the pads. Therefore, even though all of the pads have their lower left-hand corner at
0,0, the lower left-hand corner of the lower Vdd buses are at 0,6.

pdloot - output pad. While this is intended for driving principally capacitive loads such as
other MOS devices, it can sink current for TTL. The signal is presented at point "DATA". It
presents a small, though not minimal, load on this point. Experiments show that it can source or
sink about 3Oma, and has a delay of about 20ns into a very light load and 25ns into 50pf.

padlottl - TTL output pad. This pad is similar to the regular output pad except that it has an
n-type pullup and the input buffer has been changed to drive the pullup and pulldown
separately. This pad is experimental in that it has not ever been fabricated ; in spice it simulates
correctly, it pulls HIGH to between 23 and 3 volts. How high it will pull in real operation is the
major point in question. If it does pull high enough for TTL compatibility, it should be faster
than the regular output pad.

pod1ts - bidirectional tristate pad. If point "OUT-ENAB" is set low, the pin is left to float, and
whatever signal comes in from the outside appears at point "IN" (which is not buffered). If point
"OUT-ENAB" is set high, the signal on point "OUT" is placed on the pin (and is also available
on "IN"). This presents a fairly small, though not minimal, load on "OUT', but a moderately
heavy load (sorry) on "OUT-ENABW.

p.dlin - unbuffered input pad. This has the 'lightning arrestor" resistor and protective diodes,
but no logic. The signal appears at point "DATA".
padlblm - buffered input. It presents both the true data at the point labeled "DATA", and the
inverted data at "-DATA". Both are driven by fairly strong buffers.

padlbit - TTL input pad. This has input amplifiers designed to have a threshhold near 1.5 volts
4: for sensing the output of TTL chips. It presents both the true data at the point labeled

"DATA", and the inverted data at "-DATA", though the latter's threshhold is not offset as far as
it should be. The output from "DATA" is fairly strong but the "-DATA" output is weak.

UW/NW VLSI Release 3.0 -2- 06/01/85

".." ." "'.'. "."." "" .-"%',""." ,,,"". . ,-",-".,"- "- .. •.,"......."........-.....".............,-......",.'."......."..-...."..-.....,"......"..'.,."....."-...".-.....



Appendix A UW/NW VLSI Consortium

I-...

padlgd, padlvdd - Vdd and Gnd pads. The appropriate voltages come out on 100 micron wide
metal lines. The ground bus is broken in the Vdd pad and the lower Vdd bus is broken on the
Gnd but the guard ring does continue under the ground line, without any contacts (obviously).
padlp - spacer for pad frames. This cell is mainly meant for making it easy to fill in spaces
between pads; all it contains is the three power and ground buses.

- short guard ring. This cell is a 40 micron long piece of the 20 micron wide guard ring.

- long guard ring. This cell is a 400 micron long piece of the guard ring.
padl - the complete group. A cell containing an instance of every cell in the group.

3. Group Two
The pads in the second group are much smaller than those in the first group, 200 x 430 microns. This
sin is dictated by the size of the buffers on the buffered input pads. There are no output pads in this
family. Each of the pads again has two Vdd buses, which are both 20 microns wide, and one Ground
bus, which is 28 microns wide. The input protection is the same as for the Group 1 input pads and
there is also a 20 micron wide guard ring under the lower Vdd bus.

4. Group Three
This group actually consists of just an unbuffered input pad so the size of the other pads, Vdd etc., is
dictated by this pad and is 200 x 306 microns. This pad has a 30 wide upper Vdd bus, a 10 micron
wide Ground bus and a 20 micron wide lower Vdd bus with the guard ring under it like the other
pads. The input protection on this pad is the same as on the others.

5. MOSIS Standard Pad Fram

Pad frames have been developed for some of the MOSIS standard pad frames. The frames contain the -
indicated number of pads, all of which are initially unbuffered input pads. The pads are arranged to
meet the MOSIS specifications and where necessary, the padlsp instance has been used to fill in the
buses and the guard ring in between the pads. Also, each of the pad frames has instantiated in the
middle of it a set of the available pads. Since the output pads are fairly large, not all of the padframe
spacing would allow using all of the allotted pins, only those frames that allow a full complement of
pads have been implemented; the available frames are:

FRAME DIE SIZE INTERIOR PROJECT PINS/PACKAGE PIN ROW
NAME (MICRONS) SIZE SPACING
28p46z34  400 x 3400 3320 x 2120 28 DIP 00"
40p46x68 4600 x 600 3320 x 5520 40 DIP 0.6'
40p69x68 6900 x 6800 562 x 5520 40 DIP 0.6"
64p69x68 6900 x 6800 5620 x 5520 64 DIP 0.94
64p79x92 7900 x 9200 6620x7920 64 DIP 0.9
S4p79z92 7900 x92W0 6620 x7920 84 PGA_ _ _

UW/NW VLSI Release 3.0 3- 06/01/85



Appendix B

CMOSPW CELL DESCRIPTONS

Herein is contained a description of most of the standard cells available in the CMOSPW cell library.
At the end of this appendix is located. a writeup on sinulation conditions.

11W/NW VLSI Release 3.01 06/01185



LA1

I.'

CMOSPW LIBRARY CELL INV INVERTER
Truth TableT 

Y
Neared Faactlemal

A- , Y Equlvalemt:

CMOS 4049, 4069
TTL 7404

Nodes A Y
inpu Load I

wak Dimon d VO pfIN CU ndtl 33 X AC ali--ha sle Vs - 5V

bIMp Trmitlm 1hs * S

Fos Out Far OiI-t "u Lm-

__TiP TYP

Propagation delay
(high to low) r. 20 45

Propqatio delay
(low to high) IFLN 3D 63

OND . o__ __t tan time THL 3 _ _5.

- Output rim tri tTLN 4.5 14.0

jab oiitb

£ aDeiagrm _____

VDD NOTES:
1) rail separation: 41 X
2) bounding box (x xy): 33h x56A

Table values from SPICE simulation
y

IJ

CAESAR Mec: SUW-VLSI TOOLS/src/cellib/cmospw/invca
4 DD Mae: SUW- VLSITOOLS/src/cellib/cmospw/(inv-attnvsym)

2. L



CMOSPW LIBRARY CELL NAND2 2-INPUT NAND
Truth Table

A ful Yy=A

Neared Fuinctinala y

y Equivalent:

CMOS 4011
TTL 7400

Nodes A B Y
Input Load I I

week Earm d 1/O plas Ca WIt: 37 X AC Chumetulks VDD -5V

ftpg Truddm Tim. -Sm

IX Out FAI Out
inlt inat outt Panmir Ld-1 Load-19

T" 1,,

Propagation delay
(high to low) tMNL ID 4.

Propagatioo delay
(low to high) tln 23 7D

Output fal time trl 3D 93

- EOutlspt fin tim t rTU 4J 14J

inlb in2b outh

maredt lehmnade Dlqr - -

VDD NOTES:
1) rail separation: 48 X
2) bounding box (x xy): 37k~ x63i

Table values from SPICE simulation

.11

CAESAR fie: SUW VLSI TOOLS/src/cellib/cmompw/nand2.ca
D 11s: SUW VLSI TOOLS/src/cellib/cmospwl{nand2.att, nand2.sym)

................... '.............. ........... ......................-. ,........................ .. .. . .... ..... ... %



CMOSPW LIBRARY CELL NAND3 3-INPUT NAND

Truth Table

A I I Neared Functional

By1 0 1 Equatleit:
11110 CM0S 4023

TTL 7410

Nodes A 8 C YI

* me Dlwmst d 110 pin Wl WNWth 53)X AC ChdU 'sun VD 5V
Inut Tmddm TIM. 51111

Propaowl. Ideoay

Propagadou deily

(low to high) 2tz.... 2. 73 1
Output t11 ti 'THt 3a 123

tjt jOutput fn tie trLN SA 16.0
inlbief .n36 oath

areult Mnehade Dsgnt

VD0 NOTES:
1) rail separation: 47 X
2) bounding box (z xy): 53k x62k

Table values from SPICE simulation
Y

A

CAESAM. Me: SUW VLSI TOOLSlsrcicelliblcmospw/nand3,ca
DoUs SUWYVLSI-TOOLS/srccllib/cmospw/(nand3.att, nand3.sym)



CMOSPW LIBRARY CELL NAND4 4-INPUT NAND

Truth Table

A3CDY YABCD
0 x xx 1

A~ XX x I
XXA0 Nemvef Futlornal

CB 11 Equivalent:

C--

ode A I C IDIYI

mek MFa dV pncdl wiabU 58 )6 AC Cblglasd VVD~ - 5V
lapa Iroaidm Thus Sa

Fan one Fee out
W WeW ntOwtt Pat.-d L41-

Pxopsgadoe delay

(high to low) 'silL 2,0 8.
Ptopsgadoa delay

(low to high) IW 30 6.3

GOutput ton time tWjr 5D 10.5

inlb in2b in~b in4b oubh

Greult Schmie Dlagm

VDD NOTES:
1) rail separation: 53 A,
2) bounding box (x xy): 58k. X68).

- .~.Table values from SPICE simulation

ry

CAESAR (He.- SUW-VLSI TOOLS/src/cellib/cmospw/nand4.ca
DB Mlee: SUW-VLSI.TOOLS/srlcellibemospw/{nand4.att, nand4.sym)



CMOSPW LIBRARY CELL NOR2 _ _ _ _ _ __2-INPUT NOR
Truth Table

&.! xY =A +B

A- 14! Nearest Functional
1111 Equivalent:

M3 CMOS 4001
TTL 7402

Nodw A 5 Y
Enpu Load I -

Week Maws dr 1/0 -s cal i db M4 x AC Q 'N.its Vo,1  SV
Inpu Thadds TIM. Sw

YOU out Few out
it anl2t on am"Lad-i I..M-10

VDE ___TO T

Propaptios delay
(high to low) taft 23 5.0

Praegaxic delay
(low to high) 9!gL~ 3.5 10. -

G ______ fal tim trj 4D 10.0

____ -j - Output fine tim tri ab 22.
inib in2b outb

VDO NOTES:

A 1) rail separation: 47 )k
2) bounding box (z xy): 36k x62k

Table values from SPICE simulation

CAESAR file: SUW VLSI TOOLS/src/cellib/cmospw/nor2.ca
DO fles: SUW VLSI TOOLS/src/cellib/cmospw/(nor2.att, nor2.sym)



CMOSPW LIBRARY CELL NOR3 3-INPUT NOR
Truth Table

!L MEY Y=A +D +C

A0 0 10
A0 1 10 Nere Fucional

B 100Equivalent:
C =) 101,

1110CMOS 4000
TTL 7427

Nod= A B C Y
[aM Load 1 I I 1

Nak Woan d YIO -la CA Width: so X AC Cbtnae VW S
b1m Thm~em It -w

inF t Ot annie Lai-1 Lkead-i.

VD__ Typ Typ

Propagation ddlay
(high to low) tNL 25 5D

Propagation dewy
(low to high) t" 60 16.0

GNIOutput fallU t1IL 4.0 123

d Ld Output fin tim t TUI 130 36.3

inlbin2b in3b outb

ateuht febanadc Diegam

VDD NOTES:

A 1) rail separation: 47 X~
2) bounding box (z xy): 50k. x62.

Table values from SPICE simulation

L~c ~V

* CAESAR Ale: SUWVLSI TOOLS/src/cellib/cmospw/nor3.ca
01 DIfles: SUW-VLSI-TOOLS/sr/cellib/cmospw/fnor3.att, nor3.sym)



CMOSPW LIBRARY CELL NOR4 _ ______ 4-4NPUT NOR

Truth Table____

AC DY rY=A +B c D

X XI S

AxtFFIF Nearud Functional
B- I x x xe Equivalent:

D D O CMOS 4002

1-TL 7425

Nodes A B C D Y I
Inpu Load1 1 1 1

auk am= d 110 On CdI mIlk 57 AC CbuWMtklsu Vim~ 5V
hla Timidia TIM. Sa

Fea t Im 0Ow
Iot i inu ia31ti o ea- lad

Ptopegadom delay

(low to high) jgx 55 24.0

00twe fa tim fTIIL 63 12.3

tjOutpujtj06t fi im le fTLII 19.0 51.
mlbin2b in3b in*b outh

anuldt Unmaude Diegam

1) rail separation: 58 X
2) bounding box (x xy): 57k~ x73.\

Table values from SPICE simulation

* CAESAR Mie: SUW VLSI TOOLS/srccllib/cmospw/nor4.ca
* DD fles: SUW VLSI TOOLS/src/cellib/cmospw/{nor4.att, nor4.syml



CMOSPW LIBRARY CELL XOR2 2-INPUT XOR
Truth Table

AY =A 98
00

A- Neared Functional
B -Y Equivulent:

CMOS 403D
TTL 7486

In~~ 1od 2

uke Imwm d I/O PAS Cii mdii 0 k AC Ch~eadulag Va,, SV
brau Tfmidm Tim - Sao

VFM out VFM out
mu O~tpamd Lemi-1 Iaaed-le

Z _______ Typ Typ

Propapadon delay
(hiab to low) 1Mf 73 113

Propagadon delay
(low to high) .2AS. 7B.LL 19D

qu Outpt tan ils t TML 7J) 123
Lj j j Ot~ fn fas fLS 12J 403

ualb in2b oath

anull Sebae Diqemn

V NOTES:
1) raft separation: 69 X.
2) bounding box (z xy): 59k x84h

Table values from SPICE simulation

CAESAR 1Wp- SUW-VLSI TOOLSsrcIib/cuospw/xor2.ca
DD C"les SUW VLSI TOOLS/srcJceuib/cmospw/{xor2.att, zor2.sym)



KCMOSPW LIBRARY CELL XNOR2 2-IN9PUT XNOR
Truth Table

I 101 Neareg Fawclsal

NodesB AV
[a 0oad 202

NekD6 10pb _ 1bsyA zmm lale. Vf
B~Shmd ~-S

Input ot 1~t 2A- 1 R1- I I I I6

Pr1"Mto dfdayTh -S

Propagation delay
(low to high) .IgL.. 23 13.0

CN0 OutputIa fain TrML 33 12.0
Oumt fin im. tTUI 11.0 26.

inib id2b oath

antftutchate DMagr

V D NOTES:
1) rail separation: 71 k

A___ 2) bounding box (z xy): 59hi X86k

Table values fronm SPICE simulation
Y

CAESAR M~e: SUW-VLSI TOOLS/src/cellibicmospw/xnor2.ca
9 ~ D 03 el: SUW VLSI TOOLS/src/celliblcmospwl(xaor2.att, mnor2.syui)



CMOSPW LIBRARY CELL CLKINV CLOCKED ENVERTER
Truth Table

% CAYY 

A

i ~N-t-ilrIoNeead
A- Y Equimlat:

CMOs
TTh

Nodes C IC- A Y
Inpu Load AT71 .33 1

Week Nor d 1/O pli dl WVIdth 52 X AC Omeachwhma V0D $VS
Naww Thum*Sm Tim San

cloelt clockBart jut oan
-1~~~F r- -=one Fmu owa

___ _ Typ Typ

Propagution delay
(high to low) tfL 3.7 7.0

Propagation delay
Qow to high) .2a.. 3.5 175

____Output Ualf time tTNL 55 lei

clockbelockflarb iob outb ________

aflt Semade DIWgr

Voo NOTES:
1) rail separation: 44

~- C 2) bounding box (x xy): 52) x59k

Table values from SPICE simulation
A

y

jc

CAESAR file: SUW -VLSI -TOOLS/src/cellib/cmospw/clkinvca
S DB Moo: SUW-VLSIJOOLSsrccellibcmspw/(clkznvat, clkinvjsm)

J-7



CMOSPW LIBRARY CELL SEL21NV 2-INPUT INVERTED SELECTOR -

Truth Tabl

A

B CMOs
TrL 74157

Nodes S A IB IY I
Inpu Load 2 1 1 11 1

lank bieaim d 110 ON. COi WON 74 X AC Chudl VD 3VS
hpul 1fdd= Thee in3

inlt va in witFAm out Fm one
7 r-fr~f Flowd-I laed-il

V_ _ _ _ TYP TIP

Propagation delay
(higb to low) tBNL 43 73

Fropagatice delay
(low to hi5b) eg 5 21a .

3Outpa: fail tin. tIIL (721
tjdt jOuqt fin tim trLm 20S 45.0

Iib ab WU~ sedb __________

1) rail separation: 55 k
4 132) bounding box (x xy): 74k. x70)

A .j Table values from SPICE simulation

CAESAR Ale: 51W VLSI TOOLS/srccellibicmospw/sel2invca
D a: SWVLS7TOOLSIsrcdcelliblcmowI/(se2invatt, sellinvaym)



CMOSPW LIBRARY CELL DLATCH D-LATCH
Truth Table

C C-IDO1

O Neareu Fuctional

Equlvalent:

CMOS
TTL 74LS77

Node I C- D 0% ~ ~ ~ ~ U Inut Load Id

Bek Dliam d !/O pi Cl WidtW 77 X AC (.mgegk V
0 0 

- 5V
bmp Tmnidm Tim - s

int clocks clockBsn outt Fm Out Fee ON
R E --- T1 __ --- I IA -10

VDDE: L. I_ I I___

Propagatio dday
(iO to I") tSL 63 10.0

Propapgton delay
(low to high) t. $a 21.0

Output an tim TiL 60 103
GND L Output rin tim $TIM 70 13.5

job clockb ciockBarb outb

arnas SUhe DWqrm

VDD NOTES:

1) rail separation: 58

D 2) bounding box (z xy): 77)k x73h

Table values from SPICE simulation

0

,1_ CAESAR Me: SUWVLSITOOLS/src/cellib/cmospw/dlatcbhca
DS film: SUWVLSITOOLS/src/cellib/cmospw/{dlatchatt, dlatch.sym)

:: '' . .. . .. . .. . . . . . .. .. . ,. . . ,. , -, . .2. , .-. . . .



CMOSPW LIBRARY CELL DLATCHR D.LATCH WITH RESET
Truth Table
C C4!1.P0

D-1 x I 16Nealue Vumtleal

C ~Equivalent:

CMOs
c TTh

Nodes C C- R D I0
I Ipu Load I I I

Uw ise mm d 1/0 pim cdI WIIa x AC CkintUi Vw. -

clockflat w wdmT.-
int clockt --. t You ON Fm ON
R -4 4- Fran Lad-I lad-IS

*VD DEI I I I I TOp TYP

Prope~edon dday

(hiob to 1m) Ig!L. 73S Ila
Propagao. dday

(low to hish) lIt.. I3A

output ha fi TErL 78 12.0
GND I I I Owu fi dm ITN 9 6

mnb clackb ruusib otb
ciackfarb

VDD RS~rrNOTES:
1) rail separation: 58 X
2) bounding box (x xy): S8? X73L

D3) Reset propagation dclay. 2.0 6.0
4) Reset fail time: 3.5 11.5

Table values from SPICE simulation

CAESAR Mie: SUW VLSI TOOLS/srclcdllib/cmnospw/dlatchrca
UD 03Mien: SUWYVLSI.TOOLS/src/cellib/cmospw/(dlatcbratt, dlatchrsym)



- 18 -

Simulation Conditions

All CMOSPW standard cells were simulated by spice (a circuit simulator program). The circuits were
generated from the layout artwork by first creating CIF (Caltech Intermediate Form) files from the
layout. The circuit extraction program mextra was then used to extract the circuit from the CIF file.
Following are some electrical data of the timing simulations.

Temperature parameter was set to 27"C

Control signal transition time was 5 nas

VDD SV GND =OV

Output fall time (trNL) was measured from 90% (4.5V) point to 10% point (0.SV) of the output
signal.

Output rise time (tug) was measured from 10% (0.SV) point to 90% point (4.5V) of the output
signal.

Propagation delay (,,,L or tpLu) was measured from the control signal 50% point (2.5V) to the
output signal 50% point (2.5V).

Output disable time from high level (tpmz) was measured as following. Output signal was pre-
charged to high level (SV) at the beginning of the simulation. tpHz was measured from the con-
trol signal 50% point to the output signal 90% point, i.e. 0.5V swing.

Output disable time from low level (t,,z) was measured as following. Output signal was set to
low level (OV) at the beginning of the simulation. t,~z was measured from the control signal
50% point to the output signal 10% point (0.SV swing).

Enable time to high level (tpz,,) was gained by setting the output signal to low level at the begin-
ning and measured from the control signal 50% point to the output 50% point.

Enable time to low level (tpu) was gained by pre-charging the output signal to high level at the
beginning and measured from the control signal 50% point to the output 50% point.

For all cells (except pads), fan out load = I means loading the cell with one inverter; fan out
load - 10 means loading the cell with 10 inverters in parallel.

For the pads, fan out load of 1 means a loading of 5 pF while fan out load of 10 means a loading
of 50 pF. During the measurement, output of each pad was load with 2 resistors: one 16.67K
resistor from Vdd to output and one 5K resistor from output to Gad.

UW/NW VLSI Release 3.0 -18- 06/01/85

.. .;:,. . ..-... /. . *.,..'. '.'% ... ..- . . ,../ - .. -,, . ,-.. . . , - ,. , -. ,, ,-, , . .



Appendix B UW/NW VLSI Consortium

Following is a list of the SPICE model parameter values (see SPICE reference manual for parm
eter description) that were used: rm

_____ PMOS NMOS
LEVEL 2 2

VTO -0.9 0.9
CGSO 4.OE-10 52E-10
CODO 4.OE- 10 5.2E-10
COBO 4.OE-1O 52E-10
RSH 95.0 20.0
Ci 2.OE-4 3.2E-4

CJSW 4.52-10 9E-10
is 1.02-4 1.0E-4

TOX 5ShE-8 5.02-S
NSUD 5.0215 2.5E16
TPG -1 +1
Xi 602E-7 802E-7

*LD 5DE-7 6AE-7
130 200 450

UCRIT 8.024 8.024
UEXP 0.15 0.15
UTRA 03 0.3
VMAX 5024 502E4

UW/NW VLSI Release 3.0 - 19- 06/01/85



NETLIST User's Guide

UW/NW VLSI Consortlim

Department of Computer Science
University of Washington

Seattle, WA 98195

a,'.

(This document is based on portions of the document 'User's Guide to NET, PRESIM and
RNL/NL.' by Christopher J. Terman, Laboratory for Computer Science, MI.T., Cambridge, MA
02139.)

UV To run NETLIST type

in*U inire [o Iel [-o) [-soJ (-do,#I [-#,#]
infile is the name of the NETLIST input file, if outfile is specified, that file is used for output. The
options are:
-0 old format input, size specifications are taken to be length/width rather than

width/length.

-ttech Uses tech in the technology portion of the units/tech line at the beginning of the simulation
file produced (Default is ???, unknown).

--auwuts Sets the number of centi-microns per lambda to units (Default is 250). Warning: The
units set by this option appear in the comment line of the sim file. This value is not used

by PRESIM and does not influence an RNL simulation.

-50 use specified number as initializer for internal node names; useful when you want to
merge the results of separate NETLIST runs.

-do,# set the default width (first number) and length (second number) for depletion devices.
The defaults are 8 and 2.

-e0, like -d except for enhancement devices. The defaults are 2 and 2.
.10,0 like -d except for intrinsic devices. The defaults ar 2 and 2.
-l0,0 like -d except for lowpower devices. The defaults are 2 and 2.
pl#,# like -d except for p-channel devices. The defaults are 2 and 2.

A NETLIST file can insert other NETLIST files by using the include com- mand:

-"Include flle me .et
The single argument must be a string (ie., enclosed in quotes).

UW/NW VLSI Release 3.0 - 1- 06/01/85

16... .. -



UW/NW VLSI Consortium NETLIST User s Guide

Available through NETLIST are all the regular built-in functions of RNL (i.e., a subset of
standard LISP primitivies) - see RNL documentation for a description of these subroutines. In addi-
tion, NETLIST offers some spe- cial functions useful for building a description of a transistor net-
work. These functions are described below.

NETLIST is a macro-based language for describing networks of sized transistors. Names in
NETLIST refer to nodes, which presumably get inter- connected by the user through transistors. A
node name has two forms

(i width length)

n is the name of the network node, length and width specify a transistor size. This is used in NET-
LIST constructs where mention of a name causes creation of a transistor.

n is the name of the network node; when transistor sizes are required they are taken from the
appropriate defaults

When using a name to refer to a node, it must first be 'declared' (this allows typo's to be caught
early on). Nodes are declared by using the node statement or the local statement (see below). The
node statement looks like:

(node nl n2 a3 ...)

where n1, n2, etc are the names to be declared. Note: when using structured names (see the repeat
statement) only the first component has to be declared.

The interconnect capacitance associated with a node can be specified as follows:

(capacitance n 1234)
(setq pf-sq-micron-of-diffusion fOe-4)
(capacitance n (0 13 pf-sq-nmcron-of -diffasion))

The first argument is the name of the node, the second the capacitance in pf (must be a number).

A resistance can be specified as follows:

(resistor nl n2 1500)

The first two arguments (n1 and n2) are the names of the nodes to which the resistor is connected, the
last argument is the resistance value in ohms (must be a number).

An electrical node can be given several names by using the connect statement:

(connect n1 n2 n3 .. )

The names ni, n2, etc. will all refer to the same electrical node. This statement is useful for connect-
ing i/o signals to the edge of an array generated by a repeat statement.

The voltage threshold for logic high and low states can be set by the NETLIST command thres-
hold:

(threshold x 02 02)

would set the logic low threshold for node n to 02 (normalized voltage) and the high threshold to 03.
If no threshold is specified, the node will be given the default thresholds as given in the configuration
file for PRESIM (see PRESIMDOC for details).

The 'delay" of a node (the transition times for changes in the node's value) can be specified by
user with the delay command:

(delay n plh phi)

where plh and phi are integers specifying the low-to-high transition delay and the high-to-low delay
respectively. Delays are specified in RNL time units (1110th nanosecond). If you do not specify a
delay for a node, RNL will calculate one based on the impedence of the driving transistors and the

UW/NW VLSI Release 3.0 -2- 06/01185

..-.~ ~~. 7 . . . . . . .. . . . . . .



UW/NW VLSI Consortium NETLIST User's Guide

capacitance of the node; user-specifted delys override the usual RNL calculation.

(ratio gateiratio)
set a global parameter gate ratio for use in cnand, cnor, cinvert and the transistors connected to the
input signal in the clkinv. Default gate-ratio is 2.0.

Node interconnections are accomplished by one of the following NETLIST statements:

(trans us d [w [1).
(utrau, S s d [w [11)

enhancement mode transistor with gate g, source s, and drain d. I and w specify length and width of
transistor (can be ommited).

(dtra g s d [w [11)

like etrans, except depletion mode transistor
(ttrans S s d [w [I1)

like etrans, except intrinsic transistor

(trma g s d [w [nD

like etrans, except low-power transistor

(ptra, S s d [w [lf)

like etrans, except p-channel transistor

(tgate out in node nodebar)

wires a CMOS tranmission gate from the signals node and nodebar. The order is alphebetical, the is
the n type is gated by node and the p type by nodebar. The size of the p type device is set explicitly
on the nodes node and nodebar not by the ratio commands. Additional arguments (more control)
may be added but there must be an even (2N) number or it will complain. Nodes in and out are have
their usual meanings.

(pullup a)

depletion-mode pullup (to vdd) of a.

(pulldown a n-I ... n-k)

chain of k transistors from a to gd, gates of transistor are n-I, .... n-k.

(invert a b)

two-transistor NMOS inverter with output a and input b.

(cinvert a b)

two-transistor CMOS inverter with output a and input b. The size of the p type transistor is deter.
mined by the current value of ratio. See the command ratio for adjusting this value. Default 2.0.

(clkiny out in clk elk-)

CMOS clocked inverter. This function builds a clocked inverter from clk, elk- and in nodes. Clk
gates the n type transistor and elk- the p type (just like tgate). The size of the p device gated by in is
determined from the current value of gate ratio (set by the ratio command). The size of the p device
gated by nodes elk and elk- are set using standard node syntax and does not use the ratio command.

(nor a n-1 ... n-k)

pulls up a, and creates k transistors from a to grd controlled by n-1 through n-k.
(cenor a n-I ... n-k)

UW/NW VLSI Release 30- 3- 06/01185



UW/NW VLSI Consortium NETLIST User's Guide

produces a CMOS nor gate with output a and inputs n-1 ... n-k. The node a is pulled up with a chain
p type devices and is connected to grd with the n type devices. Both sets are gated by the list of
inputs. The size of the p type transistor is determined by the current value of ratio. See the com-
mand ratio for adjusting this value. Default 20.

(nand a n-I ... n-k)

equivalent to

(pullup a)
(pulldown a n-i ... n-k)

(cnand a n-) ... n-k)

produces a CMOS nand gate with output a and inputs n-1 ... n-k. The node a is connected to Vdd
through the p type devices and pulled down by chain of n type devices. Both sets are gated by the list
of inputs. The size of the p type transistor is determined by the current value of ratio. See the com-
mand ratio for adjusting this value. Default 2.0.

(and-or-invert a (n-I ... n-k) ... (m-I ... m-))

equivalent to

(pullup a)
(pulldown a n-1 ... n-k)

(pulldown a m-I ... m-I)

Iteration construct is repeat statement:

(repeat index low high
[(local 1-1 ... l-j)]

where index will be given successive values starting with low and finishing with high. You can u:e the

index in structured names, e.g.:

foo.index foo.(I+ index) foo.(1- index).bar ...

local variables are described under macros.

For ease of circuit entry, the user can build and call parameterized macros. macro definitions
have the form

(macro n (p-l ... p-k)
[(local I-I ... l-j)]

where n is the name of the new NETLIST function being created, p-i ... p-k are the formal parame-
ters, 1-1 ... 1-j are the optional local node names used in the body.

The macro is invoked as follows:

(n a-I ... a-k)

which causes the body to be interpreted after

1) all occurrences of p-i in the body have been replaced by a-i, etc.

2) all occurrences of 1-1 in the body have been replaced by a new, unique node name. Unique
names will be a number (like for anonymous nodes in pulldowns).

UW/NW VLSI Release 3.0 .4- 06/01185



UW/NW VLSI Consortium NETLIST User's Guide

3.0 Examples
In the following examples

e g sdlIw

specifies an enhancement-mode transistor with gate g, source s, and drain d with length I and width w.

d g sd I1w

is similiar, except transistor is depletion mode.

Quickie examples:

(invert a b)
d a a vdd 8 2
e h a gnd 2 2

(invert a (b 17 5))
d a a vdd 8 2
e b a gnd 5 17

(invert (a 2 2) (b 2 4))
d a a vdd 2 2
e eb agnd2 4

(nor (a 16 2) (b 24) cd)
d aavdd2 16
e b a gnd 4 2
e c a gnd 2 2

d a gnd 22

(and-or-invert a (b c d) (e f) (g))
d da avdd 82
e b a 1001 2 2
e c 1001 1002 2 2

k9 e d 1002 pid 2 2

e e a 1003 2 2

e f gd1003 gnd 2 2I

Two dimensional array of foo's:

(repeat 11 8 (repeat j 1 8fooij))

generates

foo.1.1 foo.12 foo.1.3 ... foo.L8
too.2.1 ... f00.8.8

* Simple two-inverter dynamic memory cell:

UW/NW VLSI Release 3.0 -S-061011R5



-------- W T TV, -1-

UW/NW VLSI Consortium NETLIST User's Guide

(macro bitcell (output owtput-enb input inpus-enb refresh)
(local a b c)
(trans inpuw-enb input a 2 4)
(invert b a)

= (invert (c 2 2) (b 2 8))
(trans refresh a c)
(trans oatpu-enb c outputs 2 4)

(bitcull bWO renb bitO wenb phi2)

generates

e wenb bitO1004 2
d 1002 1002 vdd8 2
e 1001 1002 gad 2 2
d 1003 1003 vdd 2 2
e 1002 1003 gnd 8 2
e phi2 1001 1003 2 2
c renb 1003 bitO 4 2

* Assume you had an alu, bit-slice macro of the following form

(alu carry-in operand] operand2 result carry-out)

then the following macro would produce an n-bit alu:

(macro ALU (n dasabusi databus2 resuitbus cin cowt)
(connect cin cout.O)
(repeat i I n

* - (alu cout (1- i) databusli databus2.i resadtbusi cowli))
(Connect cowt COUtn)

Instead of using the connect statement one could have conditionalized the calculation of the argu-
ments to alu:

(macro ALU (ns databusi databus2 resultbau can cowt)
(repeat u In
(alu (cond ((= i 1) can) (I cou.(l- i)))

databuslis
databus2i
resultbusJ
(cond (h in) COut) (t cout n))))

The file /usr/visi/nllpads.net contains the following macwi:

* (input-pad world) ;the input pad
(output-pad world in) ;the output pad
(tristate-pad world in direction) ;the tristate pad
(clockbar-pad world -phil -phi2); the clock pad

UWINW VLSI Release 3.0 -6- 06101/85



J Y

PRESIM User's Guide

Q.1

UWINW VLSI Consortiwn

Department of Computer Science
University of Washington

Seattle, WA 96195

(This document is based on portions of the document 'User's Guide to NET, PRESIM and
RNL/NL, ° by Christopher J. Terman, Laboratory for Computer Science, M.I.T., Cambridge, MA
02139.)

One must first convert the Ar file to a network file suitable for use by RNL or NL - to do this

we run PRESIM:

Ci presimfoosimfoo [config] options...

which converts the file foosim into a binary file for RNL/NL called foo.

The -S option:

Suppresses the sum-of-products formation. This may be desired if you think
sum-of-products is formed wrong otherwise the advantages of the transistor and
node reduction make this option unattractive.

The -e option:

-efileminvalue

writes a list of node names and capacitances to the specified file. Only capacitances larger than min-
value will be included.

The -t option:

.tfile,minvalue

writes a list of transistors and RC values to the specified file - there are two entries for each transis-
tor. The R's come from the size of the transistor, C's from the source/drain capacitance. Only RC
values larger than minvalue will be included.

The -p option:

-presistvoltage

• .provides a worse-case estimate of the circuit power consumption by assuming that all the pullups
(DEP or LOWP devices with drain=VDD) are all on simultaneously. 'Voltage' specifies the supply

UW/NW VLSI Release 3D) - 1- 06101185

a. - . -.. . . .-.. .. . .



.7 r7 -7.77'.- 

UW/NW VLSI Consortium PRESIM User's Guide

* .voltage, for example *-p?" specifies a VDD of 5 volts. The result is printed after PRESIM completes its
other processing. When figuring the resistance of a pullup device the "power characteristic resistancep as set in the config file is used.

Presim's results are dependent on a number of parameters that vary with the technology used. A
set of variables is built into Presim that allow calculations to proceed when the optional config file is
not present, but you should realize that these values do not correspond to any particular process. The

, -" config file can be used to override these built-in values. The correct format for configuration files is
given with the following example. This config file contains the default parameter values. The "lambda
parameter specified in this file is ignored for sim files in the UCB format. UCB aim files have their
dimensions specified in centimicrons. The 'units. parameter in MIT format sir files is ignored by
presim, see the Netlist users guide for details.

(Resistor values not explicitly provided in the configuration file are estimated by linear interpolation.
The resistor values are stored, sorted first by width, then by length not by the ratio.)

parameter value comments...

Lines beginning with ";' are treated as all comment. The parameter names and their dtfault values
are:

configuration file for "standard! MPC process

capm2a 00000 ; 2nd metal capacitance -- area, pf/sq-micron
capm2p .00000 ; 2nd metal capacitance -- perimeter, pf/micron
capma .00003 ; 1st metal capacitance -- area, pf/sq-micron
capmp .00000 ; 1st metal capacitance -- perimeter, pf/micron
cappa .0004 ; poly capacitance -- area, pf/sq-micron
cappp .00000 ; poly capacitance -- perimeter, pf/micron
capda 0010 ; n-diffusion capacitance -- area, pf/sq-micron
capdp .00060 ; n-diffusion capacitance -- perimeter, pf/micron
cappda .00010 ; p-diffusion capacitance - area, pf/sq-micron
cappdp .00060 ; p-diffusion capacitance -- perimeter, pflmicron
capga .0040 ; gate capacitance -- area, pf/sq-micron

lambda 2.5 ; microns/lambda (conversion from sim file units
to units used in cap parameters)

lowthresh 03 ; logic low threshold as a normalized voltage
highthresh 0.8 ; logic high threshold as a normalized voltage

cntpullup 0 ; < > 0 means that the capacitor formed by gate of
; pullup should be included in capacitance of output

node

diffperim 0 ; < > 0 means do not include diffusion perimeters
that border on transistor gates when figuring
sidewall capacitance (')

subparea 0; <>0 means that poly over transistor region will not
; be counted as part of the poly-bulk capacitor ()

UW/NW VLSI Release 3.0 2 - 06/01/85

• **.. ,



UW/NW VLSI Consortium PRESIM User's Guide

diffext 0 ; diffusion extension for each transistor, i.e., each
transistor is assumed to have a rectangular source
and drain diffusion extending diffext units wide and
transistor-width units high. The effect of the
diffusion extension is to add some capacitance to
the source and drain node of each transistor --
useful when processing the output of NET to improve
the capacitive loading approximations without adding
explicit load capacitors. diffet is specified in
lambda (it will be converted using the lambda factor
above).

resistance channel context width length resist
; this command specifies the equivalent resistance for a transistor
; of type channel with the specified width and length. Transistors
; matching this entry will have the specified resistance; linear
; interpolation is done if the width and/or length is not matched
; exactly.
; channel is one of "enh*, *depr, 'intrinsic, now-power',

,pullup", or "p-chan"
context is one of "static", "dynamic-high", "dynamic-low', or power

; width is given in lambda
; length is given in lambda

resist is given in ohms

() These paramters should be 1 only when processing the output of
the node extractor. They cause various corrections to be made
to the interconnect component of a node's capacitance -- usually
only extracted sim files have information regarding interconnect
capacitance.

PRESIM uses these parameters in calculating the capacitance for each electrical node and the resis-
tance for each transistor channel.

The location of worst case config files for different technologies can be found in the technology
manual page (use the UNIX command man technology 5).

UW/NW VLSI Release 3.0 - 3- 06/01/85

b".0,



RNL 4.2 User's Guide

UW/NW VLSI Consortium
Sieg Hall, FR-35,

University of Washington,
Seattle, WA 98195

(This manual documents version 42 (UW) RNL. The manual is based on
Chris Terman's manual of similar title.)

1. INTRODUCTION
RNL is a timing logic simulator for digital MOS circuits. It is an event driven simulator that

uses a simple RC (resistance capacitance) model of the circuit to estimate node transition times and to
Iestimate the effects of charge sharing. The user interface is a simple LISP interpreter. This allows

both interactive simulation and the programming of complex simulations. See Chapter 2 of "Simula-
tion Tools for LSI Design' by C. Terman for details of the algorithm. A short introduction to the
model is included in the "Theory of Operation" section of this guide.

The version of RNL described herein is version 42 as distributed by the UW/NW VLSI Consor-
tium. It differs from previous versions in that it is considerably faster for many simulations. In addi-
tion the user interface has been augmented.

To use RNL, one needs sim file for the circuit to be simulated. This can be extracted from the
mask file (e.g., CIF) or developed using NETLIST, a program that processes textual schematics.

The first step is to convert the sim file to a network file suitable for use by RNL by running
PRESIM:

% preim t..Aim fee (c fte] [-cfllein] [-tlemin] [predst,veltae] < CR>
Presim converts the file "foosim" into a binary file for RNL called "foo. The other parameters are
optional and are described in detail elsewhere. The conversion process involves the computation of
the effective resistances of the transistors as well as the capacitances of the circuit nodes. In order to
have a consistent estimation of capacitances we reccommend that if you are using the circuit extractor
mestra that you use the "-o" option to force the program to output the dimensions of the circuit nodes
rather than to estimate their capacitances. (See the PRESIM documents for information on options
and sections of this manual on calibration.)

To invoke RNL, either type

% nI <CR>

or

%ml cmdflle < CR>

UW/NW VLSI Release 3 - 06/01/85



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

If the "cmdfile" argument is provided then it should be the name of a file that contains a sequence of
RNL commands. At the very least this command file should load one or more libraries of standard
functions and should read in the binary description of the circuit prepared by PRESIM. For all but
the simplest of circuits the command file will also contain commands and the definitions of LISP func-
tions written by you to help in your simulation by performing such tasks as test vector generation and
the simulation of the environment in which your circuit is designed to operate.

A minimal command file would contain the commands:

(load "uwstd.l')
(load "uwsim.l')
(read-network "foo )

where the file 'foo' was prepared from a sim* file by PRESIM.
When the end of the command file is reached, input is taken from the standard input.

2. RNL THEORY OF OPERATION

It is not necessary to have a detailed understanding of the internal computations of RNL in
order to begin to use it. It is, however, useful to have a general idea of what is going on. In particu-
lar, this section will be helpful when reading the discussion on some of the limitations of RNL's cir-
cuit model. The rest of this section is a discussion of RNL's internal computations and is quoted
directly from C. Terman's original RNL User's Guide.

The RNL simulator are designed to handle ratioed logic, bidirectionality, and charge
sharing/storage. They can be used to determine the functionality and approximate timing behavior of
circuits commonly found in digital MOS designs.

RNL uses the following simple recipe for simulating a circuit. Recall that PRESIM has esta-
blished the capacitance of each node and the size of each transistor. (The network extractor written
by C. Baker automatically derives both from the mask files; if the network is derived from a NET-
LIST description, the user must explicitly specify the interconnect capacitance for nodes where it is
important.)

Once input values have been assigned by the user, RNL calculates the effects of the new values
by repeating the following operations until no further nodes change values:

(1) when nodes are added to the network (the result of some transistor turning on),
compute the "charge sharing' implications of the new node's capacitance and logic
state on its electrical neighbors.

(2) for each node that might be affected calculate V,, and R,,,,, the parameters for the
Thevenin equivalent circuit. The new logic state of the node is determined from
Vt,-,.

(3) if the node has changed state, calculate the transition time using the node's capaci-
tance.

(4) propagate changes (if any) to other nodes.
Basic to the operation of the simulators is the notion of an event -- an event specifies (i) a node in the
network, (ii) a new logic state, and (iii) a time at which the node's value is changed to the new logic
state. RNL maintains a list of events, sorted by time, that tells what processing remains to be done.
Whenever the user changes an input, an event is added to the list; when the list is empty the network
has 'settled" and RNL waits for further input.

When started with an initial list, RNL sequentially processes the next event on the list, stopping
(1) when the list is empty, (2) when a node the user is tracing changes value, or (3) when the
specified amount of simulated time has elapsed. Processing an event entails

(a) removing the event from the event list.

(b) changing the node's state to reflect its new value.

1/I/NW VLSI Release 3 - 2 - 06/01/85

. ..-
*. ".1



UW/NW VLSI Consortium RNL Version 4.2(UW) User's Guide

(c) calculating any consequences, i.e., new events, resulting from the node's new value.
First all nodes that might be affected by the change are found and marked -- this
includes the source and drain nodes of transistors with the current node as a gate,
and all nodes connected to these nodes by conducting transistors (the search through
the network stops only when an input or a non-conducting transistor is reached).

For each marked node two calculations are made: first a 'charge sharing' calculation
is performed (see 2.1) to model changes of state due to charging/discharging of the
node capacitances. Second, a "final value' calculation is done (see section 22) to
determine the nodes ultimate logical state.

Since nodes are only added to the event list when their values change, portions of the circuit
unaffected by the current set of changes to the inputs are not re-evaluated -- the algorithm is event-
driven (sometimes called selective trace).

A node can have up to two events pending:

(1) a "charge sharing' event describing an immediate change in the node's state due to
the redistribution of charge among the capacitors for nodes on the connection list.
This type of event is only generated when a node is added to a subnetwork (i e.,
when a transistor turns on).

(2) a 'final value" event describing what the final, driven state of the node will be.

The simulation computation computes both types of events for each node and then does the following:

(a) when a new charge sharing event is scheduled, throw away pending events of either
flavor. If the new charge sharing event is for the same value that the node currently
has, it can be thrown away too, i.e., the node wil end up with no events pending.

(b) when a new final value event is scheduled it will be ignored if

(i) there is a pending final value event for the same value which is scheduled to
happen at an earlier time than the new event. If this test fails, any pending
final event is discarded, and the remaining conditions checked.

(ii) there is a pending charge sharing event for the same value as the new final
value event.

(iii) there is no charge sharing event and the new event is for the same value that
the node currently has.

If none of the tests are successful, the new final value event is added to the event
list.

These rules are based on the observation that the event that was last calculated reflects the latest nct-
work configuration and hence should override events calculated earlier. Charge sharing events throw
away final value events since the charge sharing calculation is immediately followed by a new final
value calculation.

The next two sections describe the two parts of the simulation computation.

2.1. Charge sharing computation

This portion of the simulation calculation tries to model various capacitive effects that happen
when two (or more) previously unconnected nodes become connected. For example:

0-> I

0 Csmall IQarge
In this circuit the transfer gate has just turned on, connecting a bus (represented by C1,p., initially at

UWINW VLSI Release 3 -3- 06/01185



UW/NW VLSI Consortium RNL Version 4.2(UW) User's Guide L

logic low) with an inverter whose output is a logic high. If Cl,,, and the pass gate are large enough,
the inverter output will go low (C,,,u is discharged) initially, but eventually both the inverter output
and bus will go to a logic high. In RNL, this sequence of events happens in two steps: a charge shar-
ing calculation that predicts the first transition, and a final value calculation that predicts the first
transition, and a final value calculation that predicts the ultimate state.

The charge sharing computation proceeds as follows:

(1) set CL = CX = CH = 0;
(2) compute connection list: starting with current node, include all nodes in the net-

work that can be reached via non-off transistors (includes transitors with gates with
logic state X). For the charge sharing calculation, depletion transistors are con-
sidered to be "off" since they (usually) represent a high impedance connection over
which charge sharing would happen very slowly.

(3) visiting each node on conection list, calculate summary capacitances (CL , Cx , CN:
each node contributes to the sum corresponding to the node's current state). Actu-
ally steps (2) and (3) can be merged into a single computation.

(4) compute initial state:

1 CH/(CL + Cx + C,)> v.

INITIAL STATE 0 (C, + CZ )/(CL + CX + CH)<V1.

X otherwise

For each node on the connection list, schedule a transition to the initial state with
zero delay -- this event may be ignored under the conditions described at the end of
the previous section.

VA,,, is the logic high threshold of the node, Vj,, the logic low threshold; these can be set separately
for each node or one can use the default setting (see NETLIST and PRESIM documentation).

Note that although the computation could be made node-by-node, groups of electrically con-
nected nodes are dealt with as a whole since their events are obviously related.

2.2. Final value computation
After the charge sharing calculation is done, RNL revisits each group of affected nodes to compute
their final values. As we saw in the example of the previous section, a node's ultimate value may
differ from its charge-sharing value.

The final value computation computes two peices of information about each node.
(1) its final logic state. Recall that the transistor network containing the node is being

modeled by an equivalent resistor network. To determine the logic state of a node,
RNL computes the Thevenin equivalent for the node in question from the modeling
resistor network (more on how this is done below) -- the Thevenin equivalent vol-
tage is used to calculate the final logic state of the node.

(2) if the node value is changing, an estimate of the transistion time is needed. If the
transition is from high to low, RNL computes the effective resistance to GND for
the node (RGNO) and then calculates the trasnsition time as RGNO *(capacitance not
already at GND). A similar calculation is made for low to high transitions. Transi-
tions to X are defined to take the same time as the shorter of the high-to-low and
low-to-high transitions.

The following subsections deal with each part of the final value computation.

UWINW VLSI Release 3 -4- 06/01/85

""'.*'"'*. .• . .:; . .'.-. ,,-. .,.. .',,..,'.'.,, .-.- .....,,. .',',.. ,., '., ., ,.,' - •,-.... -\-N..,.'



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

2.3. Network analysis
This section outlines how the Thevenin equivalent circuit for a given node is calculated from a

larger network. We start by describing the simple transistor model, show how the Thevenin
equivalent is derived using information about each transistor, and end by showing how the new value
of a node is computed.

The transistor model in RNL can be quite simple since it is only used to predict the final logic
state of a node and how long each state transition takes. Although the channel resistances of the

transistors change as their terminal voltages vary, it might be possible to use *average channel resis-
tances' to characterize the transistors' behavior. RNL does just this - transistors are modeled as resis- P
tors whose resistances are determined by the logic state of the transistor's terminal nodes and the type
of transistor:

Rtransistor = (length/width) * type * state where

width, length are the dimensions of the active transistor area.

type is the average channel resistance per unit area for the particular type of
transistor.

state a scale factor that depends on the logic state of the transistor's terminal
nodes.

The following table shows type'state for an enhancement transistor (V, is the logic state of the gate
node).

Vg type state

enhancement 0

1 enh

'X [enh,]

4a where enh is the characteristic channel resistance of an enhancement device. When the state of the I

gate and/or source nodes of a transistor are X, the resistance of the transistor is also 'unknown and is
specified by an interval.

We can now describe how V, , and R,, for a given node can be calculated from a network of
nodes and transistors. The network analysis subroutine does a tree walk of the network returning the
values of the two resistors, RH and RL, that make up the characteristic voltage divider for a node:

node 
R

RL
"°' I

The subroutine is outlined below. The terms "sourceand "drain" are used to distinguish between the

two terminal nodes of a transistor and do not imply anything about their relative potential.

if node is a logic low input {
return with RH = o and RL = 0+

)else if node is a logic high input.
return with RH 0+ and RL

UW/NW VLSI Release 3 .5- 06/01/85 .



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

)else{
localRH: =localRL:=.
mark current node
for each "on" transistor.L with source connection to current node{

if drain node is not marked{
recursively analyze drain node
derive a voltage divider that approximates the effect of the

drain node on the current node (approximation uses RH and RL
for the drain node and the equivalent resistance for t)

parallel approximating voltage divider with local RH and localRL
}

}
return with RH = localRH and RL = localRL)

Cycles are avoided by marking each node as it is visited: this keeps the tree walk expanding outward
from the starting node. If the network does contain cycles, the subroutine only approximates the true
resistance to VDD and GND. For example, consider the following gate where the output (the pulled-
up node) is the node of interest:

RI RI

either
R2 R5 R2 or R5

HR4 R4

R3 R6 R3 R6

In the circuit on the left the pulldown path contains a cycle; RNL treats the cycle as if the circuit
looked as shown on the right. This approximation avoids having to solve a system of equations at
simulation time; fortunately, very few networks actually contain such cycles. It is also worth
remembering that the resistor network is itself only an approximation - it is not worth a large invest-
ment of computation time to calculate an exact equivalent to the resistor network.

The final state of a node can be characterized by a voltage source with a series resistor, ie., the
Thevenin circuit equivalent for all pieces of the network that influence the value of the given node.

Rthe -'node
Vthev +

V,k., a voltage interval [V -, V +1 in the range [0,11 specifying the possible voltages the out-
put node may have.

RA, a resistance interval [R-, R+1 in the range [0+, ]
V,, and R,, are, in general, intervals since the equivalent transistor resistances from which they
are derived might themselves lie in an interval. Using the values returned by the network analysis

- subroutine, we have:

UW/NW VLSI Release 3 -6- 06/01/85

..-



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

RL R+L,V.'..- R _ and V +V_ R_ +RN+ RL+ + RN-

Ra , RL + i I RM +

Because we are interested only in the worst case determination of the voltage level, we need only con-
sider the worst case Thevenin resistance. As will be seen in the next section, the final value is directly
related to V - and V +.

Different values for Rthev lead to different conclusions about the state of the node:
input (RA, = 0+). Node is designated input node (eg., VDD or GND). The value of input
nodes can only be changed by explicit simulator commands -- the assumption is that they supply
enough current to be unaffected by connection (even shorts to other inputs) made by transistors.
driven. (0+ < R,,, < 0). Node is part of a voltage divider between two inputs, ie.. it is con-
nected by transistors to other driven or input nodes. As will be seen below, the logic state of a
driven node is determined by Vthev. charged (R,,,, = - ). Node is connected, if at all, only to
other charged nodes. Charged nodes will maintain their current logic state until either (1)
reconnected to some other part of the network, or (2) a user-specified decay interval elapses at
which time logic state changes to X.

2.4. Calculating tranitlon delays
Once the final logic state of a node has been determined using the Thevenin equivalents, RNL

calculates transition times using one of the followig characteristic resistances calculated for each node:

RGND the effective resistance of all direct paths to GND. A simple serial/parallel calcu-
lation is used to determine RGND.

RyDD the effective resistance to RvD, computed in a similar fashion.

These two resistances can be calculated at the same time as the Thevenin equivalents; the network
analysis routines actually return four values: the intervals RL and RH, and the values RGND and
RVDD. The calculation proceeds as follows:

(1) set inputseen = false, CL = Cx = CH : 0;

(2) calculate connection list and summary capacitances (CL, Cx, CH: each node contri-
butes to the sum corresponding to the node's current state). If an output node is
reached during the construction of the connection list, set inputseen = true.

(3) if inputseen is false, schedule a decay transition for each node on the connection list,
then exit.

(4) if inputseen is true, for each node on the connection list:
(a) if node is an input, continue with next node on list.
(b) calculate Vk, (also RGNvD and RvD to be used later).
(c) compute the node's final state:

FINAL STATE 0 V + < VI,,

X otherwise
and the effective capacitance and resistance

UW/NW VLSI Release 3 -7- 06(01/85

,i d, ,r ~~~~~~~~~..-................................,, . - , • -. . -. . .-..... ..- ,.... .. . . ... . • .. % .. -. . .- -. ,- -. . . .,% . . .



UW/NW VLSI Consortium RNL Version 4.2(UW) User s Guide

CL + CX if final state I 1

Cf - CH +C X  if final state 0

min (CL + CX ,C,, + Cx) otherwise

RVDD if final state = I

Rd!= f &ND if final state = 0

min (RGmD , Rv) otherwise P

(d) schedule a transition to the final state with a delay of Rf, !C,!f nanoseconds,
or use user-specified delay if present.

Note that the effective capacitance, Cff , depends on the summary capacitances, not just the capaci-
tance of the node in question. This means that none of the connected nodes will reach its final value
much before the others.

2.5. Calibrating the model

The charge sharing calculation described in section 2.1 depends only on the capacitance associ-
ated with each node. These capacitances are specified by the designer as part of the NETLIST
description or in the PRESIM parameter file, both of which are described elsewhere in this document.

The final value computation uses both the node capacitances and resistance information about
each transistor. The circuit data base contains the size and type of each transistor -- what the
designer must provide in addition is the characteristic resistance for each type of channel (i.e., the
resistance of a square transistor of that type). See the description of the set-params subr in section 7.5
for how this information is specified to RNL.

Actually, RNL uses three characteristic resistances:

a static resistance used in calculating RH and RL. a dynamic-low resistance used in calculating
the resistance of paths to GND. a dynamic-high resistance used in calculating the resistance of
paths to VDD.

A single characteristic resistance won't suffice: RNL uses resistances to determine both the voltage p
level and transition times -- a resistance value that gives an accurate estimate of the voltage level may
not necessarily result in good transition time estimates. Thus, static resistances used for voltage
level calculations can be specified separately from 'dynamic" resistances used for transition time calcu-
lations.

There are two sets of dynamic resistances: dynamic-high resistances used when calculating the
resistance of paths to VDD, and dynamic-low resistances used when calculating resistance to GND.
Ordinarily, these are set to the same value for a particular type of transistor; some useful exceptions:

(1) setting the dynamic-low resistances very high for devices which should not appear in
pulldown paths. The very high transition times that result will serve to flag 'strange"
circuits.

(2) setting the dynamic-low resistance for enhancement devices to be appropriate for
pulldowns, while setting their dynamic-high resistance to be correct for source-
follower configurations.

(3) since pullups are treated as separate types, the dynamic-high resistance for deple-
tion devices can be set for a source-follower configuration.

UW/NW VLSI Release 3 W - 601/85



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

Future versions of the RNL will distinguish between different circuit contexts for the same type
of device: e.g., enhancement devices would be classed as ordinary, pulldown, source-follower, transfer,
etc. Having the ability to set separate dynamic resistances for a transfer device (for example) means
that the transition times for high-going and low-going transitions involving the transfer device can be
much more accurate.

The static resistances can be estimated from measurements (actual or SPICE'd) of the low thres-
hold for standard logic gates -- there is considerable flexibility since there are many more adjustable
parameters than are needed. Dynamic resistances can be estimated by measuring high- and low-going
transition times of standard circuit configurations and choosing the characteristic resistances to give
an R-C time constant equal to the time the actual waveform takes to cross the desired threshold.

3. RNL CALIBRATION VIA THE PRESIM CONFIG FILE

Provided here is a brief description for setting the parameters in the presim configuration file.
This is not the only way to obtain these values but the scheme does provide some consistancy between
analysis models like those used in SPICE. Throughout it is assumed that the Presim User's Guide has
been consulted and is available for parameter names, defaults etc.

3.1. Capacitance

There are three basic types of capacitance values that can be set by the use of the configuration
file.

1) Capacitance from the area of the node interconnect. This case breaks down into 3 subcases;
metal area (1st and 2nd layers), polysilicon area and diffusion area (both types in CMOS).

2) Capacitance from the perimeter of the node interconnect. Parameters for all layers are provided
by presim.

3) Capacitance from the area of the gate regions of a node.

All capacitance is assumed grounded.

3.1.1. Area Capacitance

In NMOS the diffusion area capacitance can be estimated as directly proportional to the SPICE
model parameter Cj with proportionality constant KEG. For abrupt junctions (a good approximation
considering) KEQ is given by,

K EQ = 2 (N V-FTV 0.

V 1 -V 2 is the voltage range and can be assumed rail to rail. One must also be careful that the units
are correct for presim (presim: pf/micron, SPICE: F/m). For a complete discussion of this approxima-
tion see "Analysis and Design of Digital Integrated Circuits,* D. A. Hodges and H. G. Jackson,
McGraw-Hill Book Co., New York, p. 137.

Similarly in CMOS, one uses the C, for the two types of diffusion n + and p+. The contribution
of metal and polysilicon areas can be assumed to be an order of magnitude smaller that diffusion. As
of yet we have no experience with second layers of poly and metal.

3.1.2. Perimeter Capacitance

For the diffusion perimeter contributions one uses the values for CJSW provided in the SPICE
models. Warning, get the units (presim: pf/micron, SPICE: F/m) correct!

3.1.3. Gate Capacitance

Gate capacitance can be estimated from ratio of the silicon permittivity and the oxide thickness
times the area of the active gate,

UW/NW VLSI Release 3 .9.- 06/01/85

. . . . . . . .. . . . . .



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

ta'

Again one must be aware to the difference in the units used in presim and SPICE.

3.2. Resistance values

Establishing the resistance values is much more complicated. As the circuit elements (e.g. static
logic, plas etc.) have a direct bearing on the representation of transistors by the resistors Rdy.,,, and
RdyfAh •

In most cases it is sufficient to perform circuit analysis on single transistors charging a fixed
capacitive load. Two examples that should be included in any suite are shown below.

5V

V5v @t=0

,j 1_ @ t=0
IpF IpF

The type of transistor used in these experiments would vary from depletion, p type enhancements or n
type enhancements. Of course the gate voltages and must be adjusted for these various transistor
types.

The resistance value is defined then as,

R

This is in effect inverting the calculation done by RNL. The R values can be computed for the all
types and the typical sizes (length and width) of transistors used in the circuits to be simulated by
RNL. This should be streesed, the table maintained by presim is indexed by type and the length and

width independently not by the ratio
- W

S- Interestingly as a practical matter using the above definition for the resistance includes some of

the effect of the volatage dependent capacitance. This can be represented by the writing 8t as

8t = R (Cld +C (V )P....c.
C (V),,€From this the ratio is the contribution to the resistance R from the voltage dependent

CFot

capacitance.

4. SOME OBSERVATIONS ON THE LIMITATIONS OF RNL'S CIRCUIT MODEL
We begin this section quoting from the original User's Guide by C. Terman.

It should be remembered that the programs are based on a model of what actually happens. As with
any model, there are likely to be discrepancies between the predictions of the model and what actu-
ally happens. The tools described here try hard to be conservative, i.e. give a pessimistic prediction

but this can't be guaranteed. Thus, it's wise to acquaint oneself with how the models work and
where their shortcomings lie; think of the tools as performing a calculation you could do by hand

U1W/NW VLSI Release 3 - 10- 06/01/85

", " ,,, ",'- ".' " _ _ ':" - ,3 - , _ . .. " ." , "- , ., . s k , ... , .. -*'.. ',-=*- , =-



UW/NW VLSI Consortium RNL Version 4.2(UW) User's Guide

(only a lot faster and with greater accuracy and consistency); for your own protection, don't treat the
tools as black boxes.

With this warning in mind it will be assumed that the reader has acquainted themselves with the
model. The basics are provided in the Theory of Operation section of this user's guide.

As a practical matter RNL provides sufficient parameters for nodes and circuit elements to
reproduce the overall behavior obtained from other more elaborate circuit analysis tools. However, it
should be remembered that as the designer pushes the tolerances no simulation may reflect the physi-
cal device.

4.1. Propagation of X States

The main considerations for X state evaluation are;

1) Initial .resistance values (RGND and Rvjd) for charging and discharging the capacitive load are
assumed infinite.

2) In evaluating a network stage, transistors that are gated by nodes in state X are assumed to have
a resistance represented by an interval and do not terminate the stage evaluation. This interval
is included only in the Thevenin state evaluation and not in the resistance values used for
estimating the delay times.

3) Recalling that an explicit estimate of transition times to the X state are not made. The transi-
tion time is defined to be the minimum of [tpih, tphl].

There are two quite different interpretations of X states. One is to consider it as some intermediate
voltage, say 2._V. This is inconsistent with condition 2) because some contribution to the delay time
would be made with this as the gate voltage. Within the RNL model, X is best considered as an
undefined voltage. Condition 2) is then a very conservative statement of what these undefined nodes
contribute to delay times.

U&' 4.1.1. NMOS and CMOS inverters

The effects of these conditions are highlighted by the propagation of an X state through NMOS
and CMOS inverters. In both cases the state calculation reaches the correct answer that the output
should also make a transition to X. The transition times for the two cases are now considered
separately.

* For a NMOS inverter the transition time to logic H is independent of the inverter input (i.e. it
uses a depletion pullup) and it reports this as the transition time RVIE *C,,,W.

° In the CMOS case however, both logic H and logic L transition times depend upon the inverter
input. Then from condition 2), in CMOS no contributions are made to lower the transition time
from infinity. This leads to a rather unrealistic estimate for the delay time on the output.

On a node by node basis RNL does provide the capability to override the RC time constant. By
explicitly setting the rise and fail times for a node, transitions to X are propagated with minimum of
the two values. By its nature this solution removes one of the attractive features of RNL, the
dynamic evaluation of signal delay times. Moreover, in the cases where there are more inputs to the
output node (e.g. a nand) this effect can be difficult to track down. Let a word to the wise be
sufficient.

4.2. Node Overdrive

Important considerations for the following discussion;

1) The replacement of transistors with resistors is independent of the logic thresholds declared for
the transistor terminals.

2) Node states are determined by comparison of Thevenin resistance ratios with node logic values
9 - VI.. and Vg.

When two (or more) charging elements are driving a single node, accurate modeling of node

overdrive guarantees the right element wins. Node overdrive is used more frequently in CMOS design

UW/NW VLSI Release 3 -11 - 06/01/85



UWINW VLSI Consortium RNL Version 42(UW) User's Guide

and should be of particular interest to those designers. Using this property in a digital circuit intro-
duces significant dependence on analog properties of the circuit elements and nodes. In such cases it
is suggested that an analysis tool such as SPICE be used to characterize the behavior of the subcircuit.
With the SPICE results one can use several equivalent approaches to modeling the subcircuit with
RNL. The following approach is trail and error but does not require that the device sizes be changed
from those analyzed by SPICE.

From the theory of operation section of this user's guide recall that the final state of a node is
determined by comparison of the Thevenin resistance ratios to parameters VI.., and V O. Further-
more, these parameters can also be set on a node by node basis. Values can then be found that repro-
duce the SPICE behavior for the node of interest. Depending upon the translation from transistors to
resistors, the range V1 ,, to Vki can be quite narrow. Again success of any of these methods depends
on the tolerances in the design and all can be made to fail.

4.2.1. Memory cell

An example of node overdrive that is commonly found in NMOS and CMOS designs is the 6
transistor memory cell. Only the CMOS example is shown here but the technique presented here
works equally well for the analogous NMOS design.

V
dd

M M6

6 6

R M 1  MT

-- 1  C 2 D
MM 'T

We include from Hodges and Jackson ('Analysis and Design of Digital Integrated Circuits," D.
A. Hodges and H. 0. Jackson, McGraw-Hill Book Co., New York, p. 380.) a discussion on the sizing
of the transistors in such a memory cell.

To read a 1, D and Dbar are initially biased at about 3V. When the cell is selected, current flows
through M 4 and M 2 to ground and through M s and M 3 to D. The gate voltage of M 2 does not fall
below 3V. so it remains on. However, to avoid altering the state of the cell when reading, the con-
ductance of M 2 must be about three times that of M 4 So that the drain voltage of M 2 does not rise
above Vr . The operations of writing and reading a 0 are complementary to those just described.

Such conservative design style should provide the designer with a working circuit without appeal to
detailed analysis. Optimization, however, of the memory cell would be difficult to accomplish with
RNL.

Simulating circuits of this type brings into focus an important conceptual difference between
RNL and analysis tools. In RNL the logic threshold voltages V1,. and Vqh are declared indepen-
dently from the replacement of transistors with resistors. In the memory cell this independence means
that RNL could find transistor sizes that predict correct behavior for any set logic threshold voltages.

UW/m'W VLSI Release 3 - 12- 06/01/85



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

Design of the 6 transistor memory is by no means the only case where the independence of the logic
thresholds and transistor replacement can provide misleading results. As a rule subcircuits with ana-
log properties should be analyzed using other tools first and then RNL parameterized to fit that
behavior.

4.3. Floatfng Node

Important considerations for this discussion are;

1) The effects of a charge sharing event are evaluated immediately.

2) Only one charge sharing and one final state event can be pending for each node in the circuit.

Floating nodes present another case where the analog properties dominate the prediction of the
, behavior of the subcircuit. In many cases a floating node can have several inputs making it difficult to

find a set of RNL parameters for the nodes involved. The following example demonstrates these
difficulties.

4.3.1. Exclusive or

This is a CMOS design of an exclusive or where all transistors can be of minimum size. It
requires the transmission gate (TG) to compensate for the poor transmission of a logic low by a p type
enhancement and conversely logic high by a n type enhancement.

b

out

T

a abar

Initially it was thought that out would require the most attention in the parameterization. Naive

RNL simulation provided reasonable predictions for the cases where TG contributed to the final state

of out. The states that utilize the TG are indicated in the state table below. RNL did not predict
proper behavior in other cases. For example, when b was high and a changes from low to high, out
was predicted to be X. This was not the result of SPICE analysis. It was also found that correct
predictions for the other states could only be obtained when nodes a and b were set at the same time
in the simulation. Another alternative was to declare abar as an input. This evidence suggests that
the other nodes (e.g. a, abar, b) should be the focus. Why?

UW/NW VLSI Release 3 - 13- 06/01/85
• .'~

"-'-.'',,,-'-.-...k iN f,-.',•.__ ",:".,I. ._ 'i ". ,- -''..t'.". ,'"'i i.- ."- 3 ''" ":,q-",' ','..-..; ': '



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

a b out

o 0 1 (TG)

0 1 0 (TG)

1 0 1

1 1 0

In the first case the simultaneous transition of a and b produce the proper final state because the
result of charge sharing is the correct final state. Secondly, declaring any node an input (in this case
&bar) provides it with zero impedance for that state. For the duration of it being an input, this
excludes any possible state changes including the offending charge sharing event.

The difficulty in simulating this circuit with RNL centers around the fact that the node out is
controlled by the nodes that are also its inputs, namely a and abat. Transitions of either node can
promote the scheduling of both charge sharing and final state transistions. The effects of the charge
sharing event are by design evaluated immediately. Without careful consideration of the V& and
Vju, for the nodes a and abat, the charge sharing events can result in a final state of X for node out.
The correct final state for out is then discarded by RNL (only one charge sharing and final state
change can be pending) and is replaced by a transition to X.

4.3.2. Summary
From the examples presented RNL, used with some care, does have the ability to reproduce

many of the results obtained from other analysis tools. Due to the independence of transistor replace-
ment and node logic voltages detailed analysis of subcircuits should be done when analog properties
dominate the subcircuits behavior.

4.4. Problems With Circuit Initialization.
The functions sim-lnit and switch-nit operate by walking through the network and for each

node that is in the X state scheduling on the event queue an immediate transition of that node to the
0 state. A subsequent advancement of the simulated time will allow these transitions to occur and
their effects to propagate. This is especially useful in circuits that contain storage elements that can-
not be controlled by the inputs to the circuit. A typical example is a divider circuit composed of a
chain of latches and whose only input is a clock line. Because RNL interprets I as the "unknown"
rather than as the *intermediate" state, a flip-flop which contains X's will remain "unkno-'," rather
than go through a transition from a meta-stable to a well-defined state. (Circuit ananysis simulators
such as SPICE have their own problems when it comes to resolving mets-stable states.)

While it is sometimes necessary to use dim-tit or switch-Int, there are cases in which these func-
tions will be unreasonably expensive, taking hours or even days to initialize the circuit. This is espe-
cially true if aim-lblt is called before any other attempts are made to initialize the circuit. This
phenomenon has two realted causes:

Sim-hit schedules its (nominally simultaneous) transitions in the order that it finds the nodes in
the node hash table. This is in contrast to scheduling nodes closer to ;nputs first, or other
related schemes. This can result in a lot of extra events being scheduled and evaluated. A typi-
cal example is when an output of a NOR gate is initialized before its inputs. The effects of the
output being in a 0 state are computed and propagated even though the evaluation of the inputs
will eventually put the output in a I state.
The evaluation of events during initialization can be very, very expensive compared to compar-
able events during the normal operation of the circuit. The reason for this is again the

UW/NW VLSI Release 3 - 14- 06/01/85

. . ..- - .... ..* *. - .- .- . . - . -. . . . , */ . .. : . .. : .. . : . . . : .



UW/NW VLSI Consortium RNL Version 4.2(UW) User's Guide

interpretation of the X state. When RNL attempts to evaluate the effects of an event on some
node A, it examines the states of all the other nodes connected to A. Since the interpretation of
X is Ounknown', a transistor whose gate is X might be on. If A is the source or drain of that
transistor then it might affect the final state of A and therefore the computation must consider
this. If the node A happens to be affected by many transistors (consider one line in a bus), and
if the control lines gating those transistors are in state X, then each time any of the nodes con-
nected to the bus through one of these 'maybe on' transistors goes through a transition all of the
nodes will be examined. This is exactly what happens when sim-lult is invoked before the con-
trol lines are initialized. Eventually the control lines may be initialized, but by then the damage
has been done.

The moral is that one should be careful when one attempts to initialize a circuit in RNL. Good
design practice dictates that for testability purposes it should be easy and efficient to put a circuit into
some known state by driving its inputs. One should attempt to use that initialization protocol to ini-
tialize simulated circuits also. The cases in which this does not seem to work are those in which there
are embedded state machines that must already be in a well-defined state before they can be initial-
ized. If the outputs of these sub-circuits control large parts of the chip then a special initialization
protocol for these parts should be considered. Only after one has initialized what can be controlled
from inputs and only after one has eliminated the X's on the major control lines of the circuit should
one consider using aim-step to do the residual initialization.

S. USER INTERFACE
The user interface of RNL is a simple LISP interpreter. This is a brief introduction to that ver-

sion of LISP.
The interpreter continually executes the following loop:

(1) read a command from current input;

• I, (2) evaluate the command, performing the specified actions;
(3) print the result and loop back to (1).

There are two syntactic forms for specifying commands to this loop. The most general looks like

(function argument argument ... argument)

i.e., a list of names, numbers, etc. separated by white space (spaces, tabs, and newlines) and enclosed
in parentheses. The parentheses delimit the command, so that the white space can be used to format
the input any way one pleases. The arguments themselves may also be of the form (function arg
arg). The interpreter first reads the entire command -- up to the closing parenthesis. The first ele-
ment of the list is interpreted as a function. The arguments are then evaluated in left-to-right order
and the results passed to the function. The value returned by the function is printed and the reader
invoked once again. For example, given the following input

( 17(+32)
(/10 2))

*RNL would respond by typing 425 and then wait for more input. Note that nothing happened after
the first newline since the first parenthesis had not yet been closed.

The reader for the command interpreter also accepts commands of the form:

function argument argument ... argument < newline>
This is equivalent to

(function '(argument argument ... argument))
The "" is shorthand for the quote special form. This keeps its argument from being evaluated. Quote
is explained in more detail below. Many of the simple simulator functions contained in the file
uwsiml1 are written this way in order to eliminate the typing of parentheses when invoking common

commands.

UW/NW VLSI Release 3 -15- 06/01185

. , . .. . . . . .



UW/NW VLSI Consortium RNL Version 4.2(UW) User's Guide

Comments can be included by preceding them with a semicolon (;"). All characters following
the ";' up through the next newline are ignored.

S.1. Objects sad Values
The RNL LISP interpreter allows you to access the following types of objects:

- numbers -- signed integers. (16 bits on PDPIU, 24 bits on VAXen, 28 bits on PDP10s).

- floating point. (the standard single precision format for the machine.

strings sequence of characters enclosed in quotes (). Useful as constants for file names,
print statements, etc. Special characters can be introduced into the strings by using
the backslash escapes:

'\n' newline

'\r 'return

I\t 'tab

'\ooo ' ascii code "ooo" where oo are octal digits

symbols are like variables in other programming languages. A symbol is referred to by its
print name: any sequence of characters (not including a period ";) delimited by
.white space" that isn't a number or string. Special symbols (including white space
and control characters) can be included in symbol names by using the backslash
escape convention. Long symbol names with embedded blanks and all other special
characters can be created by enclosing the name in a pair of vertical bars.

Example: I long symbol \014 name I defines a

long name with a form feed in the middle. Use long symbols in preference to strings.
nodes are the electrical nodes of your circuit. Although they may have names that resemble

symbols, they are a distinct data type. Note that many nodes have print names that
are numbers. Symbols and numbers are distinguished from nodes by the context in
which they are used. In addition to numbers and symbols, nodes can have structured
names of the form "a.bc. ... where each of a is a symbol and b, c, etc are symbols or
numbers. This allows you to create arrays and hierarchical naming schemes for your
nodes. It has the unfortunate side effect of forcing you to use the vertical bar con-
vention to enter symbol names containing periods, i.e. la.bcl.

lists are sequences of objects enclosed in parentheses. Standard LISP syntax applies,
including dot notation. The empty list '() is also called 'nil'.

subrs primitive, or built-in, functions (like -).

One can evaluate an object for a value; numbers, strings, subrs, and nodes are "self-evaluating",
ie., the object and its value are one and the same.

Evaluating a symbol yields the value last assigned to that symbol by the user (see the setq func-
* tion). Symbols actually have two distinct values: the value used during evaluation and one used only

when the symbol is used as a function name. A useful example of this is the symbol *1 which when
used as a function denotes multiplication, but which when used as an argument denotes the last value

- returned by a command to the top level interpreter.
Evaluating a list is like making a function call. The function value (or the ordinary value if

there is no function value) of the first element of the list is the function. The values of the remaining
list elements are the arguments. For example, evaluating -

(+ a 3)
looks up the function value of the + symbol (in this case it will be the subr for addition), then calls

UW/NW VLSI Release 3 -16- 06/01/85



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

the function with the values (recursively computed) of 'a' and "3. The value of the list will be the
value returned by the function.

Certain lists have special meaning to the system and are called special forms. Two special forms
of particular interest are discussed here, the remainder are described in a later section. The quote
special form,

(quote arg) or 'arg
allows us to create symbol and list constants. Thus the value of (quote a) is the symbol 'a, and the
value of '(+ 2 3) is a list of three elements.

User defined functions are represented by the lambda special form:

(lambda (param param ...) exp exp ...)
The symbol 'lambda' indicates that this list is actually a user function. It is followed by a list giving
the names of the arguments and finally by a sequence of expressions which make up the body of the
function. The value returned by the function when called will be the value of the last expression in
the body. For example,

((lambda (x) (+ x 3)) 4)
evaluates to 7. We can give this function a name by making the lambda expression the value of some
symbol:

(setq plus-3 '(lambda (x) (+ x 3)))

(plus-3 4)
also evaluates to 7. In doing this we set the ordinary value of plus-3 to the lambda expression. A
better way of doing this is to use

(defun plus-3 (x) (+ x 3))
which makes (lambda (x) (+ x 3)) the function definition of the symbol "plus-3r.

Note that setq changes the "expression value" of a symbol, while defun changes the 'function
value' -- this distinction is unimportant in most applications, but is useful if you wish to change the
definition of a built-in function (beware of the implications before trying to change built-in function
definitions though!).

This version of rnt is case sensitive. Special nodes with names "Vdd' and "VDIY are aliased to
vdd; *Gnd' and "GNDY are aliases of 'gnd'.

5.2. About Efficiency

LISP symbols and circuit nodes with the same name are in fact different objects. Functions that
take nodes as arguments also work with LISP symbols, but the symbol is converted to a node each
time the function is called. This entails getting the print name of the the symbol and using it as the
key in a hash table lookup of the node. While this is implemented efficiently, it is still much more
expensive than using the node directly. Often used arguments should therefore be converted from
symbols to nodes using flnd-node. (This conversion can be done only after the network has been
loaded because the nodes are not created until then.)

5.3. Useful Symbols

The following symbols are defined by RNL and are accessible to the user. They arc useful in
writing your simulations.

is the value last returned by the top level loop. This is mostly useful when you are
poking around interactively.

base controls the radix for printing integers. If not one of 2, 8, 10, or 16 then base 10 is
used. The input radix is controlled by using the Unix conventions extended by using
"OB to signal a binary integer.

current-time is the current value of simulated time, expressed in tenths of nanoseconds.

UW/NW VLSI Release 3 - 17- 06/01/85

• .-,-."".' 'm"." "." " :"." -%- -,--/. : -. ,' .- :. ., ........................................................................-..-................... ,.' .. '." .'.'.',



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

end-of-file returned when EOF is read.

event-list-empty is set to & when there are no pending electrical events on the queue, nil otherwise.

user-interrupt is set to I if the user types the "quit' character. (Default is ctrl-\.) A check for
user-interrupt as a condition for exiting a time consuming loop is often useful.

6. BUILT-IN FUNCTIONS

The file "uwstd.l" contains functions that are usually found in LISP environments. This section
documents these functions in addition to the functions that are really built in to RNL. The functions
are grouped by application area. The areas are:

arithmetic functions and predicates
I%

list and symbol manipulation functions

i/o functions

special forms

network/simulation functions

Unless otherwise stated all functions evaluate their arguments. In addition to standard functions
described in this section, you have the option of loading the file "uwsiml" which contains a suite of
functions that implement a collection of useful and relatively easy to use "front-end" facilities for
doing circuit simulations.

The notation used in the descriptions of the functions is intended to make clear the types of the
arguments. Arguments are prefixed as follows:

g_ for any type,

,s _ for a symbol,

_ for a string,

p_ for types with unique print names (symbols, nodes, strings, and integers),

c_ for symbols and nodes,

I- for list arguments,

n_ for any number,

i for integer,

f for floating point.

* Quoting the formal parameter means that the argument evaluates to the required type. Special
types are mentioned explicitly. For example (fune 'Iarg) means that .arg evaluates to an integer and
(fune 'vec) means that tume takes an argument that evaluates to a circuit node vector.

.- 6.1. Arithmetic functions
Unless otherwise stated, the arithmetic functions take both floating point and integer arguments,

returning a floating point result if any argument was a floating point number. Warning: overflow
--. and underflow are not checked by these functions.

( 'narl ... 'n.argn )

UW/NW VLSI Release 3 - 18- 06/01/85

-..-. . . . . ...



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

returns the product of its arguments.

(+ 'n-argi .. . 'nargx)

returns the sum of its arguments.

(- 'n_arg ... 'nargn)

returns the first argument minus the sum of the remaining ones. The form ( - narg ) returns
the negation of its argument.

( 'n argI 'n arg2 'n.arg3... )

returns the quotient of n-argi divided by the product of the rest of the arguments. If all argu-
ments are integers the result is an integer truncated towards zero.

(% 'iargi 'iarg2) returns the remainder of Larg) divided by iarg2,

(1+ 'iarg )

like (+ 'iarg 1) but restricted to integers.

( I- 'iarg )

like (- 'i arg 1) but restricted to integers.

(< '#naugl 'narg2)

returns t if n argl less than narg2.

(< 'nargi 'narg2)

returns t if n argl less than or equal to narg2.

* ( = 'nargl 'narg2)

returns t if n-argl (numerically) equal to n-arg2.

( ! 'n.argi 'narg2 )
returns t if n argl (numerically) not equal to narg2.

(> 'n.argi 'n.arg2)

returns t if n argl greater than n-arg2.

(> 'n-argl 'n.arg2)

returns t if n-argl greater than or equal to narg2.

(abs'n arg)
returns the absolute value of narg.

t) 'ntat

U .returns integer part of narg,

truncated towards zero.

UW/NW VLSI Release 3 - 19- 06/01185

....... ...........-.................
V.,.". ... ....e..' '. 'r'... . ., " " , , * ' . . ',.._. -.' t' * . . . . , . ... .., ,.L. . . . , , . .*., .V . .



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

(foat '#a erg
returns floating point version of narg.

(m 'i_arg). .-'argn)

returns maximum of its (integer arguments.

minu 'i ar . .. 'argn)

returns minimum of its (integer) arguments.

(numberp 'Sar, )
returns t if Sgr, is a integer, nil otherwise.

6.2. Functions and Predicates for List and Symbol Manipulatilon
(alphaleusp 'p earg) 'parg2)

returns t if pjrg' s print name is lexicographically less than parg2' a.

(append 'I erg) 'larg2)
returns list of ILerg) with I arS2 appended to it. (This is defined in wuwstd.)

(atom'g...rg)
returns t if Sarg is not a list.

(car 'I erg)

returns first element of list I_arS.

(cdr 'Iarg)

returns list of all but first element of I arg.

(c'r'Larg
equivalent to multiple car and cdr (=aa,ad,da, or dd). (This is defined in *uwstdl*.)

(char t-num 'p erg

returns the ASCII code for the first character of s-arg' s print name.

(cons 'garg) 'garg2O)

returns a list I such that (car 1) = garSi and (cdr 1) = garS2.

(eq 'sargl 'gaprg2)
returns t if gargi and gaqrg2 are the same (identical !I) LISP object.

(equal 'g..arg) 'g;rg2)
returns t if S r) n arg) are conformable.K, (explode 'p arg
returns a list of symbols whose single character names are the characters of perg' s print name.

UW/NW VLSI Release 3 - 20- 061V85



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

(fast 's arg 'lambda)
sets s-arg' s function definition.

j. (fsymeval '_arg )
returns sarg' s function definition.

(get 'sarg 'gname)

returns value of s_arg' s gname property. (This is defined in "uwstd.lw.)

(Implode (parg parg2...))

inversd of explode. Arguments with no sensible print name are ignored.

(length 'larg )
returns number of elements in list Larg.

(Hie 'grg garg2 ... )
makes a list with elements g_argi, etc.

(make-symbol 'pa) 'parg2..,)
" .o. "'p

returns symbol whose pname is concatenation of pnames of its arguments. This is very useful for
converting nodes to symbols. See Implode.

( mpcar 'ufunc 'Larg)

-- returns a list whose elements are the result of applying ujunc to each of the elements in I_arg.
(This is defined in "uwstdl'.)

(memq 'g_arg 'larg)

returns tail of larg begining with garg, if garg is not in iarg, then it returns nil. This uses
eq to test equality.

(null 'g_arg )
returns t if garg is nil. not is a synonym for null.

(plist 'sarg )
returns s-arg' s property list. (This is an added built-in routine. It is not intended to be used
directly by users. See 'get'.)

(pset 'sarg 'Larg)

sets s_arg' s property list to Larg and returns larg.

(This is an added built-in routine. It is not intended to be used directly by users. See "putprop.)

.;) ( puame 'parg )

U returns string equal to parg' s pname.

(putprop 's_arg 'g_val 'gs_name)

UW/NW VLSI Release 3 -21- 06/01V85

-% o



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

sets sarg' s g_name property to g value and return g_val. (This is defined in 'uwstdl".)

(remprop 'sarg 'gname)

returns s_arg' s property list from gname on and removes gname property from list. (This is
defined in uwstdl'.)

(rplaca 'larg 'garg)

replaces car of larg with garg.

(rplacd 'iarg 'garg)

replaces cdr of Iarg with g arg.

(at 's-arg 'garg)

sets value of sarg to garg and returns s-arg.

(uetq sarg 'garg)

sets value of sarg to garg and returns s-arg.

(utrlngp 'garg )

returns t if g arg is a string.

6.3. 1O functions

The notation ['fid] indicates an optional file identifier argument. If it is included the operation "_Z

is directed to the designated file. It omitted the operation goes to the standard input or output device
as appropriate.

The strings used to specify filenames can contain all the standard UNIX file name expansion con-
ventions including the use of environment variables (e.g. . . / myfile').

The base used for printing integers is controlled by the value of the symbol "base'. The default
is decimal, base 10.

(cloe'fid)

close file specified byfid.

(flush 'fid )
force buffered output for file fid.

(load 'pname)

take input from file named by p name.

If the file is not found in the present working directory then the directories specified in the
environment variable RNLPATH will be searched. If RNLPATH is not defined then the default
directory $UW VLSITOOLS/Ilib/rnI is searched. UWVLSITOOLS is an environment variable
that is used in many of the tools distributed by UW/NW VLSI Consortium. This searching is

done only for load.

(log-file 'pname -

closes the currently open log file (if any) and opens a log file named pname and returns a fid
for the file. (log-file nil) closes the currently open log file. A log file contains a verbatim copy of
everything that goes to your terminal during the time that it is open.

UW/NW VLSI Release 3 -22- 06/01/85

D4. . . . . . . • . . • . " o . _N .



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

(ope, 'pname)
open file with name p name for input, returnfid for the file opened.

( openo 'p_wm )
open file with name pname for output, return fid for the file opened.

(prinl 'gag ['id] )
prints garg without trailing newline.

(princ 'garg ['fid])

like prini without quotes around strings.

(print 'garg ['fid])
print garg followed by newline.

(printf ['fid] 'string 'gargi 'garg2 ... )
print gargi ... under format control specified by string. This is similar to the printf in the stdio
library for C. Escapes for printing the g arg' s are: %c-> ASCII char, %%->print '%', and
%S-> print LISP object.

Example: (setq a 10)
(setq b '(list of symbols))
(printf "a=%d0=%SO a b)

produces
a=10
b=(list of symbols)

(read ['fid])

read an S-expression from an appropriate file. Returns the expression read or the symbol end-
of-file if the end of the file is reached. This does not recognize the shorthand syntax of the stan-
dard read-eval-print loop.

(read-network 'pname )
read a network in file named pname.

This file must be the output of PRESIM. The network described in the file is merged with the
networks already loaded. There is no way to undo the loading of a network other than restart-
ing RNL.

(read-state 'p)name
reset state of circuit to that in file named p name.

(terpri ['fidl)

output newline.

UW/NW VLSI Release 3 -23- 06/01185

"" " , " '/" "" " " "" "" "' ' " " ° " " ' " / ' " - ' " " , ,, ' - -" ,',r. :,''. " - .... '- .. .' -- '':. ,. ,, -, .- , .



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

'" ( write-state 'pname )
current state in file named 'p-name. This can be read by read-state routine.

6.4. LISP Control Structures and Special Forms

Although special forms look like function calls, their behavior can be quite different (especially
with respect to the evaluation of their "arguments).

Warning: Lambda bound variables (parameters to defun, lambda, or prog) remain bound until the
form is exited. Functions called from within these forms will see the new bindings. This is not con-
sistent with other dialects of LISP.

(and g_exlg~eip2l... )
evaluates g.exps left to right until the first ill result is found. And returns the value of the last
argument it evaluates.

* (coud clause clause ... )
Following the cond is a sequence of clauses. Each clause is of the form ( pred exp exp ... ). In
each clause the first expression is taken to be a predicate and the remainder of the expression
the body of the clause. Cond evaluates the predicates in turn, stopping at the clause with the I
first non-nil value for the predicate. The body of that clause is then evaluated and the value of
the last expression in the body is returned as the value of the cond. If no predicates evaluate to
non-nil, nil is returned as the value of the cond.

(defun s ,name (s_par ...) exp ... )

define function s name with formal parameters spar ... This is equivalent to ( t t '_nafme
'(lambda (spar ...) exp ...

(do (lvrbl ...) Iexitl expl exp2 ... )

is a generalized iteration expression.

It has three components:

(i) a list of iteration symbol declarations,
(ii) an exit clause,
(iii) and a body that is executed on each iteration.

The list of iteration symbol declarations are used to declare temporary (i.e. 'prog" bound) sym-
bols whose scope is the do expression. Upon exiting the do they revert to their previous status.
Each declaration in the list has one of the forms:

(ssym) or (ssym 'ginit) or (s_sym 'g init 'giter)

wher ssym is the symbol declared, 'g init is is an expression whose value is assigned to s_sym at
the sart of the first iteration,, and 'g_iter is an expression that is evaluated at the start of each
successive iteration to provide successive values for ssym. If 'g_iter is omitted then the value is

I: not changed automatically. The initialization and iteration expressions are evaluated in left-to-
right order. For example, the following declaration list says that i starts at zero and is incre-
mented by two, and that j starts at 3 more than the value of symbol k and is squared on each
iteration.

((i 0 (+ i 2)) (j (+ k 3) (* j j)))

The exit clause, I exit, is a list of the form

UW/NW VLSI Release 3 -24- 06/01/85



UW/NW VLSI Consortium RNL Version 42(UW) User's Guidc

(pred eexpi eexp2 ...)

After the new values have been assigned to the iteration symbols, the predicate pred is
evaluated. If its value is non-nil, then the eexp's are evaluated in order and the value of the last
is returned as the value of the do. If the value of pred is nil, then the body of the loop, i.e.
expressions expi. exp2 .... is evaluated. This process is repeated until pred is non-nil.

(eval 'garg )
evaluates garg and returns the result.

(exit)
exits rnl in an orderly fashion, flushing buffers, closing files etc.

(lambda (sparl spar2 ...) expi exp2... )
is the definition of a (nameless) function with formal parameters s_parl s.par2 .... lambda itself
is not a function.

(or gexp gexp2 .. )

evaluates the gexps left to right, stops when the first nil is returned. Or returns the value of the
last argument it evaluates.

prog (s_! s_2... 'g_exp 'gexp ... I

() saves the old values of s n s, binds the symbols to nil, and evaluates each of the gexps in order.
The old values are restored when execution of the prog is completed. Returns the valhe of the
last of the g exps. Prog is used to allocate local variables within a function.

(quote garg )
returns garg without evaluating it. The syntax 'g_arg is equivalent.

(repeat s*index 'ilower 'iupper expr list)

is a simple iteration similar to a for loop in Pascal. Exprlist is the body of the loop. Sindex is
the index variable. i lower and i upper are integers representing the initial and the final values
of the index. The index is increased by one each time the loop is executed. Returns the final
value of the index.

6.5. Network functions

An electrical network consists of a list of nodes transistors, capacitors, and resistors. The func-
tions described in this section allow user-defined functions to deal with the network.

( ! 'Inodes )
prints a list of the transistors whose gates are connected to nodes in 'I nodes.

The syntax: ! nodel node2 ... is more common. Returns nil.

? 'I_ndes
prints a list of transistors whose source or drain are connected to nodes in lnodes. The syntax: ?
nodel node2 ... is more common. Returns nil.

This command is useful for wandering through the network trying to track down the source of a
particular value.

UW/NW VLSI Release 3 -25- 06/01/85



UW/NW VLSI Consortium RNL Version 4.2(UW) User's Guide

(find-node 'parg
returns electrical node with print name the same as parg' s. Returns nil if there is no such
node.

(match-node 'p_pauern)

uses ppanern' s print name as a pattern using '' as a wild card. Returns a list of symbols whose
print names correspond to print names of nodes that match the pattern.

(node-value 'parg)

if a node exists with a print name matching parg' s return its value (one of 0, 1, or X), other-
wise nil.

(node-time 'p.ar )
returns the latest time in O.lns units at which a change occurred in the state of the nodename
provided in the argument. If the node is not found or has not changed state, 'all' is returned.

(set-delay 'c_node 'i.tplh 'itphl)

Set the transition times for the specified node; tplh (low-to-high transition time) and tphl (high-
to-low transition time) are integers specifying time in 10ths of nanoseconds. If either tplh or
tphl are negative, the node's times become unspecified and the transition times will be deter-
mined by the usual RC calculation. This command allows one to override the timing calculation.
This is useful when the RC calculation gets the wrong answer for one reason or another. Usu-
ally this is worth doing only on critical nodes, such as clocks, where an timing error can be
significant.

(met-node 'c-node 'gexp)
set value of node c node to geip• adds/removes node as an input. If exp evaluates to

0 node is added to low input list
1 node is added to high input list
U,u node is added to undefined input list
X,x .. mse text...

The node will be stuck at this input value until changed by another call to set-node. If exp is X
(remember exp is evaluated so you'll probably want to type 'X), node is removed from the input
lists. At the next simulation step it will acquire whatever value it would naturally have.

(set-params name value)
give a value to one of the simulation parameters:

report flag (default = t). If non-nil, nodes given the value of X because of
improper pullup/pulldown ratio or because of charge decay will cause a
warning message to be printed.

unitdelay flag (default = nil). If non-nil, all node transitions happen with unit delay.

decay flxnum (default = 0). If non-zero, tells the number of time units (10ths of
nanoseconds) it takes for charge on a node to decay to X. A value of 0
implies no decay at all.

'NW VLSI Release 3 -26- 06/01185

" . ... .- , , ' ', • " '-, , " "-' " ", " , ", " " -, -: , " " . , ,:r_ ' . . . . . ... .. *-r



UW/NW VLSI Consortium RNL Version 4.2(UW) User's Guide

maxres number (default = 1ElO). Capacitors on the far side of transistors bigger
than this value don't contribute to summary capacitance used in calculat-
ing transition times.

(set-threshold 'c-node 'f_vlow '_vhigh)

set c_node' s logic thresholds to f_vlow (low) and fvhigh (high). vlow and vhigh should be
numbers in the range [0,11. These thresholds are used when converting from a Thevenin
equivalent voltage to a logic state -- sometimes it is useful to be able to override the defaults for
special nodes which otherwise will turn out X.

(SIm-int)
This finds all nodes whose values are X and queues a transition to 0 for those nodes. The
integer returned is the number of affected nodes. A call to slm-step or one of the higher level
simulation commands such as "step, s', or 'c" will allow these changes to propagate. Initializa-
tion should be done by manipulation of the inputs of the circuit, simulating the real initialization
sequence. SImn-llt can be used to initialize nodes that cannot otherwise be initialized. Using
sim-lnlt without first simulating the setting of the inputs can be very, very expensive, especially
when trying to initialize circuits conected by a bus.

(ai-step 'istop-time )
simulation step using RC model. This runs the electrical simulation until current-time = i_stop-
time.

If the simulation runs to completion then n is returned. If a node that has the STOPON-
CHANGE flag set goes through a transition, then the simulation is stopped at that point and the
node that had the transition is returned.

(stop-on-cbange 'cnode 'gswitch)

If gjswitch is not nil then set c node' s 'STOPONCHANGE flag. If g.switch is nil then cnode'
s "STOPONCHANGE flag is cleared.

(swltch-Init)

like sim-init, except prepares network for initialization by switch-step instead of sim-step.

(switch-step 'stop-time)

--" simulation step using switch model. This is similar to stm-step, but transistors are modelled as
switches and transitions have unit delay. This algorithm is somewhat faster than the usual RNL
calculation for many circuits, but can give X answers for circuits for which transistor size is
important for correct operation (e.g., bit line in a dynamic memory). To ensure correct opera-
tion, one should not use sm-step until the event list is empty (and vice versa) -- i.e., all events
scheduled by a particular algorithm must be handled by the same algorithm. The value of
event-list-empty can be tested to see if the all events have been handled.

This routine may be useful when debugging the basic functionality of a circuit, or when simulat-
ing a circuit which has not been correctly sized (one that gives ratio errors using sant-step). Since
the switch-level algorithms are much faster when dealing with large groups of interconnected
nodes, switch-step may be particularly useful when initializing a network.

(walk-net 'function )
function should be a symbol or a lambda expression that takes a circuit node as its only argu-
ment. walk-net applies that function to every node in the network.

UW/NW VLSI Release 3 -27- 06/01/85

. . - - - " . ' - ' ' ' , . . ' - - - . - ..7- - - ' . - - - . -



UW/NW VLSI Consortium RNL Version 4.2(UW) User's Guide

(trace-node 'c.node 'g.switch)

If g _witch is not all then start to trace cnode. otherwise stop tracing c node. This is useful for
trying to track down exactly what is happening to a subciruit at a very low level. The first form
turns on tracing for the specified node, the second turns it off. Sample outputs:

[1]; event 1: b=H @ 1OJns
[21; b => clist: d <input seen>
[31; d: rgnd=[3D05e+04,6.11e+04, rvdd=[1.Oe+10,1.O0e+10]
[4]; d-rgnd=1.18e+04, d-rvdd 1.00e+10, lhdelay=0, hldelay=0
[51; cap: high=0.0OOOOc+00, low=0.00000ei+00, x=1.014720e+00
[61; => value=L @ 120e+01 ns
[7]; enquing d [event 1: b] L @ 220 (delta = 120)

[1]: node b makes a transition to H at 10.Ons

[21: a list (clist) of nodes affected by b is reported. In this case one
node (d)is found before an input ends the search. Inputs can be forced
nodes, vdd or gnd.

[31: Report the result of the Thevenin calculations for nodes on the clist,
rgnd Thevenin resistance to ground, rvdd Thevenin resistance to vdd.
Note in this first case rgnd is computed to be an interval. This
is the result of an input node having a value of X.

[41: Report the value of the resistors to gnd (d-gnd) and vdd (d-vdd) used
in the delay calculations. Note these values are not necessarily
the same as those in [3]. This is the result of using different values "
for R,,,, Rd,.., and Rdy,. •

[51: Report the value of total capacitance charged high, low and x for
current node.

[6,71: Compute new logic value for node and enque it at current-time +
delta (delta = RC). R and C are choosen from the values given in
lines [41 and [5].

S.. [81; event 1 -H @ 10.Ons
[9]; c => clist: d <input seen>

*-. -.. [101; d: rgnd =f1.00e+10,1.Oe +101, rvdd=[3.05e+04,3.05e +041
[111; d-rgnd=1.00e+10, d-rvdd=5.90e+03, lhdelay=0, hldelay=0
[121; cap: high =0.0000e +0, low=1.014720e+00, x=0.00000e+O0
1131; => value=H @ 6.00e+00 ns
[141; enquing d [event 4: c) H Q 531 (delta - 60)

This example is substantially the same as the first except that the Thevenin resistance is no
longer an interval.

(trce-ag-nodes 'g switch )

If gswitch is not all then start to trace all nodes, otherwise stop the trace. Sometimes this is
the only way to track down oscillating subeircuits.

7. The uwom.I package.

The uwsilmJ package is intended to provide a powerful and easy to use front end for rnt. In -*"
addition, it is can serve as the basis for customized front ends for specific projects. In this document
we concentrate on the functions intendend to be directly called by users. The programmer who

UW/NW VLSI Release 3 -28- 06/01/85



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide h.

intends to extend this or to customize it is invited to peruse the code.

7.1. Syntax and symbols.

The uwsimJ package defines two new data-structures: Vectors of circuit nodes are defined by
vecdef' s. A vecdef is a list of the form ( s mode sname cnode] ... cnoden). s mode is one of {hex,
dec, oct, bin, bit) and controls the formatting of output and input for the vector. The first four modes
allow numeric input in any base and output in the specified base (and are limited to 23 nodes), the bit
mode uses bit vector input and output. If a numeric vector contains undefined nodes it is printed as a
bit vector. The first element in the list of nodes is the high-order bit of the numeric vector.

You can request that a report about the state of your circuit be printed at certain times during the
simulation (usually at the end of a clock cycle). The format of this report is specified by a report-
form which is a list containing vecdefs , strings, symbols corresponding to nodes, nodes, and the for-
mat control symbols ( newline, tab, and page) printing of a report. The car of the list is a string that
heads the report.

The following symbols are global variables defined in uwsiml and should not be used for nodenames.
These variables however can be used in programs for the appropriate purpose.

t The property list of 't" is used to hold tokens describing which packages have
been loaded. Uwsimi requires that uwstdJ be loaded first.

incr This variable is the simulation step time interval in 0.lns units, used by the step
and clock functions; the default value is 1000 for 100.Ons.

relative-timing If this variable is not 'nil" then transition times are reported relative to the start
of the simulation step. Default is 'not nil' = 't'.

switch-level If switch-level" is non-nil then the switch-level model is used, otherwise the RC
model. Default: switch-level = 'nil'. Note: the simulator switch level model does
not appear to work satisfactorywith cmos and dynamic circuitry. Its use is
discouraged with this version of ml.

lanalyze The global variable lanalyze, if 'not nil' = 't' prevents printing of all description
texts and limits the report output defined in def-report to node and vector
states. The first column of the report is the current time in ns. Default is *nil'.

glitch-detect If this variable is 'not nil' = 't' then only multiple changes of the nodes defined
in the chfiag command are reported. Single transitions are NOT reported. A
chflag command defined which nodes are subject to glitch-detection must be
included before starting the simulation.The default value of glitch-detect is 'nil'.

I.

triggering If this variable is 'not nil' = 't' the logic triggering function is enabled. The
default is 'nil'.

trigger flag This variable is used to prevent additional triggercommand execution when a
triggercondition persists. This variable is not for external use.

- triggerjindex Contains ,he number of occurences of the trigger condition. Is initialized at 1.
Can be used to influence trigger handling as a function of the number of triggcr
conditions detected.

UW/NW VLSI Release 3 - 29- 06/01/85



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

trigger file Contains the filename where ml will look for the commands to be executed in
case a trigger condition occurs. Default is triLfile'.

7.2. Functions Intended for Direct Use by Users.

(defvec 'vecdef )
optimizes the representation of vecdef by converting LISP symbols into nodes and stores that
representation as the vecdet property of vecdef" s name.

(defvecv)

Definc a single indexed vector of type 'type' (bit/bin/oct/hex/dec) name 'basename' and elements
number.(starindex+number elements) down to number.(start index)

(defvecl)

Defines 'indexi' vectors with names 'basename' ... 'basename index' with double indexed node
names.

(def-report 'Iarg )
creates an optimized report form. Iarg is a list, beginning with a title string, containing the fol-
lowing LISP forms: strings are printed in the report without surrounding quotes.

newline inserts a newline in the output.

tab inserts a tab in the output.

page inserts a form feed in the output.

sarg for symbols other than those above causes the state of the
corresponding node (if any) to be displayed. An error is reported
and a newline is inserted if swa# cannot be converted to a node.

(vec s-arg)
or

(vec vecdef) causes the state of a vector to be inserted in the report. If the first
form is used, s arg should have been previously been given a vector
definition. If the second form is used, the vector definition is created
on the fly.

(function garg) causes g_arg to be evaluated when this form is encountered in the
printing of the report

(def-reporti I.arg )
same as deftreport except multiple vectors can be defined as in detvecl ; such vectors are oefined
with ( veci basename)

UW/NW VLSI Release 3 -30- 06/01/85

. -. ,,'.."..' . ..-..- -.... .'- ..-...... .. '-..-'-. .,.. .. .. .. '..,.. . .. ,. ... .. .. ....- .- . . ., ... '. \..-.. ,.* ., .',.*.-. .,-. . ,



UW/NW VLSI Consortium RNL Version 42(UW) User's Guide

( '1 nodes)
makes the nodes in Inodes inputs at logical high (1). (Alternate syntax: h nodel node2 ...)

(I '1 nodes )

makes the nodes in I-nodes inputs at logical low (0). (Alternate syntax: I nodel node2 ...)

( '_nodes )

removes the nodes in Inodes from the input list. They can now be driven high or low by the
modelled circuit. (Alternate syntax: x nodel node2 ...)

(a 'nodes ,)

makes the nodes in Inodes to be undefined inputs. (Alternate syntax: u nodel node2 ...)

(t 'l nodes)

turns on traces for nodes in Inodes. (Alternate syntax: t nodel node2 ...)

( at 'nodes )

turns off traces for nodes in Inodes. (Alternate syntax: ut nodel node2 ...)

(Invec '(vec name g vat] g val2...))

checks the type of vecname. If the vector is one of the numeric types (hex, dec, oct, or bin)
then it assigns the numeric value gvall to the vector. Otherwise, it treats the vector as a bit

!j vector and assigns the value gvaII to the first node in the vector, g_va/2 to the second, etc.

(btlnvec '( vec-name grvail g~yal2 ...))
is like Invec but forces the input to be in the bit vector form. This function allows elements of
the vector to be set to a or a.

(openplot '(file name) )

opens a plot file to receive notifications of reported transitions. The resulting plot file can be
processed by the program mtp to produce plots that resemble logic analyzer displays. Note the
output is controlled by specifications of chflag, chflagv and chflagi I

(clonplot 'larg )
closes the plot file. The argument is ignored.

(miarkplot marker )

inserts a marker with the name marker in the plot file.

(s 'ar, )

runs a simulation step for Inc" simulated time and generates a report at the end. (See det-report.
)

(c '(iarg) )
runs a two-phase non-overlapping clock for iarg cycles. This assumes that the clock nodes are
called phil and phlU. Each of the 4 periods is incr long. At the end of i-arg cycles a report is
attempted using the user's declared format.

UW/NW VLSI Release 3 .31- 06/01/85



UW/NW VLSI Consortium RNL Vcrsion 42(UW) User's Guide

(vecnames arg )
arg should be either vector definition or a symbol with a vector definiton. It prints out the
names and current values of the vector.

(vecnodes arg)
arg should be either vector definition or a symbol with a vector definiton. It returns the list of
component nodes of the vector.

(unchanged-since 'n_time )
returns a list of nodes that have not changed since ntime. This is useful for helping to decide
whether your simulation has adequate coverage.

unchanged 'larg )
is shorthand for (unchanged-since 0). The argument is ignored.

(chlg '_arg)
sets the STOPONCHANGE" flag for the nodes in iarg.

(unchftag 'i_arg )
clears the "STOPONCHANGE' flag for the nodes in I.arg.

(chflgv)

This command will add all nodes in the vector, assumed to have normal extensions of a
basename (like in.1 in.2 in3 ..... etc) to the list of nodes with the "STOPONCHANGE flag set.
Start index is the value of the first node (normally 0' or *1') and vector size is the number of
elements in the vector.

(unchflgv)
This command will remove all nodes in the vector from the list of nodes with their "STOPON-

CHANGE' flagset. Assumed is that the nodenames all have extensions of type: basename.1
basename.2 etc. Complement of the "chlagv" command.

(chflagl)
Sets the "STOPONCHANGE flag for all nodes withnames basenamei.j where i from I to indcxl
and j from 1 to index2.

(unchflhg I
Disables the "STOPONCHANGE" flag for all nodes with names basename.ij where i from 1 to
indexl and j from I to index 2.

(r-format)
This command writes the nodes and vectors in order as they appear in a logic analyzer style out-
put.

(Init 'state )
State can be either 'r or 'h'. This routine does more reporting than sim Mit; also signals can be
preset high (useful since many dynamic CMOS circuits are pre-charged high and start-up time of
normal simulation can be substantially reduced.

UW/NW VLSI Release 3 .32- 06/0185

."16 .



UW/NW VLSI Consortium RNL Version 4.2(UW) User's Guide

Init does the following:

The routine finds all nodes with undefined states 'x' in the network and reports the number
of undefined nodes found. Then, as determined by the argument either low or high is
applied to these nodes and a simulation step is run.
Thereafer all previously clamped nodes are released again and up to 10 simulation steps are
run until the network has settled and the number of simulation steps necessary to settle the
network is reported. A warning message is provided if the network has not settled within
10 simulation steps.
Finally, the routine again traverses the network and reports the number of nodes still in
the undefined states.

7.3. Functions Intended to be Called by Other Functions.

There are a lot of these functions. You are invited to look at uwsiml.

*, In addition, they provide examples of how many of the elements of this language are util-
ized.

-V

j-.

I,'

p . •

*UW/NW VLSI Release 3 - 33 - 06/01/85 "

.,.. -|



NETLIST & RNL

Tutorial for Beginners

Rudolf W. Nottron & Henriecus foe..
UW/NW VLSI Consortium

Sieg Hall, FR-35,

University of Washington,
Seattle, WA 98195

This document is intended as a guide for people who want to acquire a basic working knowledge
of the RNL digital circuit simulator and the NETLIST network description program in the UW/VLSI
VAX 11/780 environment. Examples are given for the preparation of logic network description files
and the production of the corresponding sire and binary files for input to RNL. Next, instruction on
the use of RNL commands to set up a clearly defined network state for a simulation is provided. Per-
forming actual simulations of some of the networks defined previously, frequently needed commands,
such as those for setting circuit values, asking about node information, running a simulation step, etc.,
are explained and applied to the network in both interactive and batch mode. Further references are
listed in the appendix.

If you arm not familiar with the UNIX operating system, read the introductory document UNIX-
quick.

UW/NW VLSI Release 2.1 - 1- 04/18/85

- 7" I



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

Table of Contents

1. Format Conventions for this Document

p.

2. Overview of the Position of NETLIST and RNL in the UW/VLSI Tool Environment

3. Logic Network Descriptions for NETLIST

3.1 A CMOS Inverter as a Simple Example

3.1.1 The NETLIST Logic Circuit Description of an Inverter
4

3.1.2 Processing the Description File with NETLIST and PRESIM

3.2 NETLIST Description File for a Ten-Bit Shift Register (Made from Latches and MS-Flip-
Flops)

3..1 Defining Macros as Building Blocks (Latches and Flip-Flops) - Building Block
Library

32.2 Making the Register with Macros from the Library - Loops and Indexed Symbols

3.2.3 Processing the Register Description File with NETLIST and PRESIM

3.2.4 Converting a Network Description into a Macro

3.2.5 Sizing of NETLIST Functions with Two or More Transistors (CINVERT, CLKINV,
etc.)

4. Circuit Simulation with RNL

4.1 Interactive Command Input and Batch Command Input

UW/NW VLSI Release 2.1 2 - 04/18/85

" -.."-'--"- " .- -""- "-"..-.".."....'".."-" -"..".'-....-..............-...-"" ,.:-'::, "-,,-.,.'.""¢



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

4.2 Practicing RNL Simulations The Shift Register

4.3 Defining Control and Stimulus Fiels the 'Easy' Way

4.4 Printing RNL Output Using MTP

45 Displaying RNL Output On a Graphics Display Terminal Using Simscope

5. Summary and Outlook

Appendix I - Further References

Appendix 2 - Description of the sim file of the example "inverter" (section 3.12)

Appendix 3 - Preparation of a simple "config' File

Appendix 4 - The 'aliase file of the example "shift' (section 3.2.3).

Appendix 5 - Summary of Typical Commands Associated with Simulation Tools

Appendix 6 - Makefile Commands

Appendix 7 A Simple Makefile

U UW/NW VLSI Release 2.1 -3- 04/18/85

"................ .-

' ."' - "• - , "•"-" .""."."-.. . .... -, . , .-.-.- . - -, .. . .. .- - . - .. -..- . .. -. .. , ,. .



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

1. Format Conventions for this Document:

The UNIX system prompt is given as a small percent sign ( ) in bold-face type.

(The RNL command interpreter has no prompting sign, which can sometimes be confusing.)

All information RNL prints out in response to your entries, including error messages, are indicated
in mai bed4a. type. If a short description of what RNL returns to you is given instead of the actual
RNL response, it is also shown in small bold-face type.

Your entries are indicated in bold-face type, normal size.

Certain commands and phrases within the text are also printed in bold-faced letters for emphasis.

Program names within the text are frequently capitalized for emphasis (e.g. PRESIM for presim).

File names are indicated in italic type (unless they are part of an entry sequence, in which case they
are shown in bold-face as is everything else that is part of an entry).

< CR> stands for the RETURN key.

- (Caret) stands for the CONTROL key (frequently labeled CTRL). If precedes a character, the
CONTROL key has to be pressed and held down while the character key is pressed.

DELETE and <DEL> stand for the DELETE key.

W2

4''1

.4.-

.W/NW VLSI Release 2.1 . 4. 04/18/85

*. . . . . . . . . . .



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

2. Overview of the Position of NETLIST and RNL In the UW/VLS[ Tool Environment

The sim file plays a central role in connecting NETLIST and RNL with the rest of the UW/VLSI
tools, as well as with each other (see Figure 1). The name sim file derives from the mandatory file
name extension sim.

in this tutorial, we will use NETLIST to produce a im file from a logic network description file, then
transform the aim file with the program PRESIM into a binary network description file for input to
RNL. We will not deal with the generation of the sim file with other tools, such as MEXTRA, nor
will we consider the possibility of using the sim file for input to programs other than RNL.

RNL must be given two sets of information for a simulation run. These are:

(a) a description of the network to be simulated and

(b) the commands to control the simulation run.

The network description specifies the elements of the network (such as transistors, NANDs, etc.) and
the way they are interconnected. The RNL command input performs functions such as setting the ini-
tial state of the network, providing signals to be applied to the network (input signals, clock, .. ),
specifying the format of the simulation report, etc.

We will deal with the network description first, and later use the networks defined in this way to
illustrate the generation of the RINL command input.

The RNL command input can be entered in two ways: interactively, or via a command file submitted
(-q to RNL (batch mode). You may use a command file to initialize the network or to apply complex

stimulus signals, and then continue to work with RNL interactively. In interactive mode, you can do
simple simulations and develop programs in RNL LISP, which may be run in batch mode subse-
quently. In most RNL sessions you will probably find yourself alternating between interactive and
batch mode.

There are conventions for the names of the files to be processed by NETLIST, PRESIM and RNL.
These conventions will be observed in this tutorial. All files related to a particular circuit are given
the same main name followed by a pariod (.) and an extension. The binary input file for RNL is an
exception to this rule - it has no extension.

The meanings of the extensions are:

.net network description file, input to NETLIST

JIM intermediate file, output of NETLIST and input to PRESIM;

this file is a true omediator - it forms the connection not only between
NETLIST and RNL, but also between NETLIST and the other VLSI
tools, and RNL and the other VLSI tools.

j command file for RNL (batch mode)

I sal alias file produced by NETLIST*
*Normally you do not hae much to do with the Al Bice, it is created automaticall1y by NETLIST and used

automatically by PRESIM.

'JW/NW VLSI Release 2.1 5- 04/18/85

I::-: . :;_. ::::, , :i



AD-A158 699 YLSI (VERYLARGE SCALE INTEGRATION) DESIGN TOOLS 4/5
REFERENCE MANUAL RELEASE 30(U) WASHINGTON UNIV SEATTLE
DEPT OF COMPUTER SCIENCE AUG 85 TR-85-87-@3

RUNCLASSIFIED MDA983-85-K-0072 F/G 9/5 NL

IIIIIIIIIIIIIflfflf
IIIIIIIIIIIIIIlfflf
IIIIII .ffffff~l lf
EIIIIIIIIIIIII
IIIII..lflllllIf
IIIEIIIEIIEIIl



L'5 j5.1 .

5%o

JL3.

LI.L

1111IL2 11111L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

Logic network
description file

4 cexample net"

alias file
other VLSI NETLIST example~al
tools, e.g. E
CRYSTAL- .=

Sim file
'examplesim'

MEXTRA-------
(circuit extraction) configuration

file Ocofigw

stimulus pattern PRESIM
file

'example tirn'

Wexample time" wexampie GEN-CONTROL

interactive control file
I/0 "examplel

(tabularRNL
tput)(graphics

o&flebehavior file output)
ivesmpleog' example.beh"

LPR SIMSCOPE MTP directives file
'example dir

LINEPITE EK 4105 ' plot file
Zenith GP-19 cexample.plot"

LPR

F-EPIIE

Figure 1
Position of NETLIST and KRlL in the UW/NW VLSI Tool Environment.

UW/NW VLSI Release 3 .5- 06/01/85



UW/NW VLSI Consortium 'NETLIST & RNL Tutorial for Beginners

no extension: binary network description file, output of PRESIM, input to RNL

You need not follow these file name conventions, but it is strongly recommended since it makes the
communication between various users much easier.

3. LogIc Network Descriptions for NETLIST

3.1. A CMOS Inverter as a Simple Example

3.1.1. The NETLIST Logic Circuit Description of -laverter

Recall from section 1. that RNL needs to know the network before you can start your imulation*.
We will describe here how the network can be specified for NETLIST in a logic network description
file using a LISP-like command syntax.

You therefore should familiarize yourself with the basics of LISP, if necessary. To help you with this,
this section will provide an example of a logic network description and an implicit description of some
important LISP properties, but will omit much of the detail and the intricacies of LISP.

Figure 2. shows the circuit diagram of our first example, a simple CMOS inverter. We will prepare
the logic network description for the inverter according to this diagram.

Vdd

in out

GND

Figure 2 CMOS Inverter

*4
X'.1

Howem, it is pomibik to add to your network in the count of the awstioon.

UW/NW VLSI Release 2.1 - 6- 04/18/85

IU." " '.-'., " . " : -" - " - .- .. - " - - - :-" ';' " ',- , -;



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

The general form of a NETLIST (and RNL) command is:

(co-uad ham argument_1 aguumt.2 rgusment_3 ...)

In most cases the parentheses are required. You will find later in this tutorial examples for cases
where the parentheses can be left out. (In particular, RNL has a syntax simplification designed to

'--" save you some typing of parentheses).

Here is a listing of the logic network description, followed by the explanation of its commands (write
the network description into a file named inverterAet.):

(1) NETWORK DESCRIPTION FOR A CMOS INVERTER

; (2) DECLARATION OF THE NODES IN THE NETWORK

(mods In out)

(3) P-CHANNEL ENHANCEMENT TRANSISTOR (PULL-UP)

(ptras In out Vdd 1 8)

(4) N-CHANNEL ENHANCEMENT TRANSISTOR (PULL-DOWN)

(etrms in GND out 4 8)

(5) SPECIFYING AN INTERCONNECT CAPACITANCE FOR THE OUTPUT NODE

* .- (capacitance out 0.03)

Hereafter, the numerals enclosed in parentheses will be used to indicate each part of the description
file.

(1) Note that a semicolon causes the rest of the line to be treated as a comment, ie., to be ignored
by the NETLIST program. Blank lines are also ignored*.

This first comment serves as a title to the network description file.

(2) You must declare any node you want to name for subsequent reference. (you could think of
this declaration as bringing the nodes named by you to the attention of RNL)". There are a
few exceptions to this rule, however. Some nodes, common to most circuits, are known to RNL
without declaration. These are the ground and drain voltage potential connections' symbol-
ized GND and Vdd (the symbols GND and Vdd are not sensitive to upper or lower case, so

You should make ample use of such comments and blank lines to make your network file as 'readable as-'." +possible.
""pshererealm always additional nodes named by NUMLIST (or other programs producing a jim file).

,-is happens, for ezample. when NETLIST processes a macro which has internal local) nodes. Such
* -names go undeclared. You will find many of them in mo mm files.

We use the term 'drain voltage potential* despite the fact that in many caes the drain of a transistor
may be connected, not to Vdd, but to any other node. Notably this is the case with transmision gates.

* UW/NW VLSI Release 2.1 . 7 - 04/18/85

%e%1
.%+-,, ,, ,%..... . .-. ...... .......-. - .... • .- .- ...- %. - ..-............-....--..- _- •.



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

. Pd and vdd are equivalent symbols).

Nodes are declared with the command

(node al a2 u3 4 .. ),
where nl, n2, n3, n4,. are the names of the nodes to be referred to in the network.

(3) The declaration of the nodes has provided the "skeleton" for the network. Next you must wfin
in' the remainder of the circuit. For a transistor this is done with a command of the form

(transltor-type gate source drain width lnbth).

Trndstor-type represents a mnemonic for various types of transistors, such as

ptrans for p-channel enhancement-mode transistor

etrans for n-channel enhancement-mode transistor

dtrans for n-channel depletion-mode transistor

(see NETLIST User's Guide for more available transistor types and other circuit ele-
ments.)

Gate, soarce, and drain represent the names of the nodes to which the gate, the source, and the
- -- drain of the transistor are connected.

The pull-up of the inverter is specified as a p-channel enhancement-mode transistor, and the
appropriate nodes are "in", 'out', and 'Vdd'.

The width and the length of the transistor's gate area in units of lambda may be specified
optionally. If omitted, both width and length default to 2 lambda. Our pull-up is given a
width of 8 lambda and a length of B lambda.

The width and the length of the gate area determine the resistance of the transistor*. In this
way you can influence the ratio of the pull-up to pull-down.

(4) The pull-down is specified, analogously to (3), as an n-channel enhancement-mode transistor
with a gate width of 4 and a gate length of 8.

(5) The final element to be specified in the inverter is the interconnect capacitance. The command

(capacItance out 0.03)

tells NETLIST that a capacitance of 0.03 pF is to be inserted between the nodes "out' and
GND. (One side of a capacitance specified with this command is always to GND). The
specification of this capacitance is an estimate of the load capacitance of the inverter.

RNL detetmine the resistance by looking up a two-dimendonal table in which the dime long are leagth
and width. In this way the influence of the geometry of the pta aream on the effectiv (omprical) resistance
may be taken into account.

3 UW/NW VLSI Release 2.1 - 8- 04/18/85
Isi"



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

3.1.2. Procem"n the Description File with NETIST and PRESIM

After the logic network description has been written to the file inverter.es, it has to be processed
with the NETLIST and PRESIM programs.

Substitute inverter for "example" in the file names from Figure 1. (Yoz already prepared the file
inverter.net.)

Then enter:

netflat Inverter.net Inverter.din <CR>

This causes NETLIST to process the network description file invereiAft. writing its output to the file
invertersim. If you omit the filename Inverter.lns, NETLIST will display the output on the screen".
(Enter % man netflst or see NETLIST User's Guide to get more information about optional parame-
ters for NETLIST).

If everything worked out correctly, the only response you will get is the UNIX prompting sign (i).

You may want to look at the invertersim file produced by NETLIST. Its content is listed and
analyzed for this example in the appendix.

The next step is to process inverterjim with PRESIM. PRESIM transforms the transistors in the im
file into resistors of equivalent size. This is done because RNL uses resistor models for the transistors
and estimates transition time delays from the equivalent network formed by the resistors and the cir-
cuit capacitances.

There is an optional configuration file which can be used to give to PRESIM technology-dependent
parameters, suck as the specific resistances of the transistor channels. If you do not use this
configuration file in the PRESIM run, default values for the specific channel resistances ar assumed.
The assigned default values are the same for all the different transistor types, which results in a resis-
tance ratio of 1 if the gate areas for the pull-down and the pull-up transistors are sized equally.

*An explanation is given in the appendix on how to prepare a simple configuration file to change the
channel resistance of the p-channel transistor to twice the value of that of the n-channel transistor.

.- .:- Read this appendix or simply prepare the very short confg file (six lines) from the listing there. You
can then run PRESIM with the config file as a parameter:

. presim Invertersim Inverter cnflg <CR>

This will cause PRESIM to process inverter im, putting the output into the file inverter. This output is
a binary file.

PRESIM will give you some information about what it did:

S vori. 4.2

I eda Wismm mb-t Itahe-6 p-ebm-1 d8py.0w-p@Ww- punp*- r,.u4

TdeR ntmden dimbmed - 2

o In fact, it wil to to the UNIX standard output, which is normally ueiped to the screen. Of couse, you
may redirect the standard output (e.g. to a file).

'V/NW VLSI Release 2.1 - 9 - 04/18/85

... .. . .. .. ..........................................



UWlNW VLSI Consortium NETLIST & RNL Tutorial for Beginners

First, it tells you its vcrsion number, which is 4.2. Then, you are informed that eight nodes were
*...'. found in the network. If you look at Figure 2, you might count only four nodes, but PRESIM counts

some of the nodes more than once.

PRESIM tells you how many transistors of the various types it found in the circuit and how many
transistors it 'eliminated*.

" You could now use the inverter file as the binary network description for RNL and run a simple simu-
lation. However, the example of the inverter was only intended to be a simple exercise to give you a
feeling for the way networks are described using NETLIST. We will consider the network description .,
of a more complex network before proceeding to an actual simulation.

3.2. NETLIST Description File for a Ten-Bit Shift Register Made from Latches and Flip-Flops

3.2.1. Definlng Macros as Build[n Socks (Latches and Flp-Flops) - Bulding Block Ubrary

We are going to build the shift register in a modular fashion as illustrated in Figure 3a through 3c.
First we make a latch from inverters (3s), then we put together two latches to get a master-slave flip
flop (3b), and finally we chain ten flip-flops to build the shift register (3c).

ci clel. o out

Figure 3a Latch

'NW VLSI Release 2.1 0 - 04/18/85

* '* .. . . . .. .



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

nl

in =inut.out2 out

ci

Figure 3b NIS Flip Flop (made from Latches)

in =outD out.l out2 out9 out.1O

ci

Figure 3c Shift Register (made from ms-ff)

Since it can already be seen that we may need latches and flip-flops in future designs, we will define
these building blocks such that we can later call them without having to redefine them. This is done
with macro definitions, which can be stored in a library file and easily loaded into future network
description files. The library file, which we shall call network library, has the same format as the jet
files. We give it the name fibber.

Here is the listing of the macro definition of the latch, followed by the explanation of its statements
(see also Figure 3.a):

(1) MACRO DEFINITION FOR A CMOS LATCH

; (2) NAMING THE MACRO AND ITS PARAMETERS

(macro latch (out in el cl-)

It I is not necesary to store the macro definitions in a library le. You may chooe to write the macro
definitions directly at the belinnin| of the network description file.

v/NW VLSI Release 2.1 - 1l - 04/18/85



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

; (3) DECLARATION OF THE NODES LOCAL TO THE LATCU

(lcal 1l)

(4) FIRST CLOCKED CMOS INVERTER

(ciuty al ia cl cl-)

() UNC KED CMOS INVERTER

(clnvut out al)

(6) SECOND CLOCKED CMOS INVERTER

(cikiav nl out cl- ci)

(7) CLOSING PARENTHESIS FOR THE MACRO
)

(1) This is the title identifying the library entry.

(2) A macro definition has the general format

(macro name (paml para.2 par=m3 ...)

body of the macro

Note the closing parenthesis after 'body of the macro", and make sure that you never forget
them in any macro definition. You should invent short and descriptive names, but do not use
the name of any of the other NETLIST functions (as listed in the NETLIST User's guide.).
The body of the macro is made up of the statements (2) through (6).
We give our macro the name "latch. The name is followed by a list of parameters paraml,
param2, param3, ... These parameters represent the values to be used when the macro is called
later. In the latch macro, they represent the names of the nodes that are used to connect the
latch to other circuits.

(3) There is one node to which one need not refer when the latch is used later. This node, "ni", is
only of local importance to the latch. Therefore it is declared as a local node in the latch
macro. Locally declared node names may be declared and r-used in other macros, since they
are considered free symbols outside the macro of their declaration.

(4) As in the previous example of the inverter, the nodes form only a "skeleton" for the network
which must be "filled in" with the circuit elements. The circuit elements are two clocked
inverters and an unclocked inverter. These elements are available in standard form as com-
mands for the network description. (This means we need not have taken the trouble to describe
the inverter with single transistors in section 3.1. However, we did this as an example of a aim-
pie circuit, and to demonstrate the use of transistors in a network description.)

A clocked CMOS inverter is specified with a command of the form

(dktav out In elk elk-).

%V/NW VLSI Release 2.1 - 12- 04/1185

;..., -.,. . , -.--------.,.--,-.-,-.-.--,.. . ... ..-... .,...,.---.--,,--.-.--.,.-.--,----,.,-,: .,..,--...,, ,



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

"clkine is a mnemonic for "CMOS clocked inverter. "out, vin, "clk', and "clk-" represent
the names of the nodes to which the output, input, clock input, and negated clock input are
connected (the clock input is the base of the n-channel transistor, the negated clock input is
the base of the p-channel transistor). In (4), a clocked inverter is connected to the respective
nodes out, in, cl, and cl-. (The gate sizes and ratio of the clocked inverter "clkinv', and the
devices "cnand", ocnor and "cinvert, can be changed with "width" and "length" values and with
the "ratio" command; see section 32.5 and NETLIST User's Guide.)

(5) A simple unclocked inverter is inserted. The general command for the specification of this
CMOS inverter is (cinvert out In), with out and in representing the names of the nodes to
which the output and the input of the inverter are connected.

(6) The second clocked CMOS inverter is specified analogously to (4).

After completing the macro definition, save it in the library file libjw.

In the following definition of the master-slave Dip-flop (see also Figure 3b), you can simply call the
latch by its macro name.

The macro definition of the master-slave flip-flop is analogous to that of the latch. Its statements, fol-
lowed by the explanation of their meanings, are listed below:

; (1) MACRO DFINIION FOR A 4OS MASTIR-SLAVE FLP-FLOP

; (2) NAMING THE MACRO AND ITS PARAMETERS
(iact moff (eat in d)

(3) DECLARATION OF TOE NODES LOCAL TO THE FLIP-FLOP

(locd al U2)

; (4) FIRST LATCH
(latckh l In el 82)

(5) SECOND LATCH
(latch set al 02 cl)

(6) CMOS INVERTER

(civu ma d)

(7) CLOSING PARENTHESIS FOR THE MACRO
)

Most of the statements in this macro definition will already be familiar to you. Note that the previ-
ously defined macro "latch" is used in the same way as other circuit elements. If you had not defined
the latch yourself, you might not even know whether 'latch' is a macro or a basic NETLIST function.
This property allows you to define successively more complex building blocks and nevertheless use

'/NW VLSI Release 2.1 - 13 - 04/18/85

j,....-.. ... ....... .,..-.. -....-. ..... .. . -. .',- ,, , .. .- -. *.-...-.....- ... ...-.- -.



UW/NW VLSI Consortium NETLIST & R14L Tutorial for Beginners

them with the same ease as the 'primitive" functions.

As we did with the macro definition for the latch, we now add the macro definition for the master-
slave flip-flop to our library file libiwe. It must be inserted after the latch, since it uses 'latch as a cir-
cuit element and will therefore call the Ilatcho macro.

3.2.2. Making the Register with Macro@ from the Library- Loops and Indexed Symbols

Looking at Figure 3c, it is now easy to make the ten-bit (or any number of bits) shift register by
chaining ten of the flip-flops defined in our macro library libine. We could write down the call for
"msr" with the appropriate parameters ten times, but NETLIST has the facility of a loop and indexed
symbols, which makes the specification of such repetitive elements as the flip-flops of the shift register
very compact. (In accordance with the file name conventions, write the following network description
into a file named shift net.):

(1) CIRCUIT DESCRIPTION FOR THE 10-BT SHIFT REGISTER

(2) LOADING THE FUNCTIONS FROM THE MACRO LIBRARY
(lad 11 lbetn)

;(3) NODE DECLARATION FOR THE NETWORK

(sode in out e)

(4) LOOP CALLING THE MASTER-SLAVE FLIP-FLOP 10 TIMES

(repeat 1 1 10

(mst outJ ot.(- 1 1) cl)
)

; (5) ASSIGNING AN ADDITIONAL NAME TO THE INDEXED NODE OUT.0
(connect In out.0)

(1) This is the usual title.

(2) Load the macro library Libxt, which has the effect of inserting the macro definitions for latch
and mitt before the description of the shift register.SJ

(3) Declare the network nodes to which you want to refer. Remember, there are two kinds of
node declarations: global, as here and in the example of the inverter (section 3.1); and local, as
in our macro definitions. I

(4) This part illustrates two new facilities which we have at our disposal when we want to specify

the description of network structures that contain the same sub-circuit repetitively.

UW/NW VLSI Release 2.1 . 14- 04/18/85

• ,%~~~~~~~~~.-. ,.,... . . . .. - . . . . .., .. . . ,. .%/ '-,,,- . .. ,-..'..'. -,. ,'''"... .'.,- .'...-



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

In most cases of such network structures, as in our shift register, the regular pattern of sub-
circuits makes it possible to refer to their nodes with a collective name followed by an index.

out.0, out.1, out2, .... out.10 (see Figure 3c) are examples for Indexed node ames. 'out, is
the collective node name for a group of nodes having a similar function or position in the net-
work; W.0'., ".1'. ... are the indices uniquely identifying each of the individual nodes.

Note one other application of indexed nodes in the 'node" command of (3). Indexed nodes can
be declared by simply declaring their collective node name. It is not necessary to list each indi-
vidual node. Thus, our declaration of 'out' in (3) represents out.0, out.1, out2, _. out.10.

Generally, an index can be represented by any symbol or expression. In the 'repeat' loop, it is
given as i' and "(- i 1)', respectively. (- i 1) is the LISP form of subtracting I from i,
and just one example of how an index can be calculated from an expression.

The symbolic index enables us to use a loop calling our master-slave dip-flop ten times. A loop
has the format

(repeat loop-index start-value end-value

body of the loop

The "body of the loop' can be any sequence of commands. The loop in (4) starts with the index
"il set to 1. "i' is increased by 1 after each call to the flip-flop. In this way the loop specifies
flip-flops with connections to

out.1, out.0, c!
out.2, out.1, c!

out.3, out2, cl

out.10, out.9, cl

After i' has reached the value 10, the loop is exited.'

(5) The network description using "repeat* and indexed nodes looks very compact, but a few nodes
were designated cumbersome names. Rather than using the name out.0' for the input to the
shift register (see Figure 3c), we will call it in'. This can easily be accomplished with the con.

nect command, which equates the names "in' and "out.O'. Another application for the connect
.* command is in connecting two or more nodes electrically.

Upon leaving the loop, the value of the symbol of the loop index will be restored to the value it bad be-
fore etering the repeat form.

* UW/NW VLSI Release 2.1 - 15 - 04/18/85



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

3.2.3. Processing the Shift Register Description File with NETLIST and PRESIM

You should be familiar with the procedure for processing a description file with NETLIST and
PRESIM, from section 32.1. However, be aware of one additional file created by NETLIST. This file
is called an alias file and it contains, for each node, all the different symbolic names that have been
assigned to that node. Remember that you specified explicitly with the (connect In out.) statement
that the names "in and "out.i' were to denote the same node.

The alias file created by NETLIST has the same main name as the other files related to the network,
which is shift for the shift register, followed by the extension al. A short explanation of the shiftal
file is given in the appendix.

Substitute "shift" for "example' in the file names from Figure 1. (You have already prepared the file
shzftnes.)

Then enter:

% netlist shift.net shiftaim <CR>

This will cause NETLIST to process the network description file shift.net in the same way as
explained before for the inverter.

(Feel free to inspect the shif sim file produced by NETLIST, which should not be difficult since you
know how interpret sim files from the example invertersim analyzed in the appendix.)

To process the description file with PRESIM enter:

Sprestm h iftim shift courtg <CR>

PRESIM gives you the following information:

V..dGn 4.2

139hune; trandstw: enh=114 Intriuak-0 -ebn-ll dep-iw-p4owuw pulsp-0 tdowg-

TtW Cmdsters dftuMhd - 226

It is very much similar to the case of the inverter except that the shift register circuit is much bigger.

You have now seen, for several examples, how to produce the network d-scripton needed by RNL.
The next section examines a special aspect of network descriptions (converting network descriptions
to macros). You may want to skip this now, and proceed to actual simulations of two of the networks
we have described so far.

3.2.4. Convertlng a Network Description Into a Macro

V/NW VLSI Release 2.1 - 16- 04/18/85

L ,.



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

'P

You have seen how to use macros as building blocks in the description of a network. A network
description can easily be turned into a macro in the following way:

Specify as parameters the nodes you want to access when you call the macro. In the example
below, (output in cl) are the parameters for the output, input and clock connections. Later,
before you call the macro, you must 'globally" declare (with the 'nodes! command) the actual
names for the respective nodes.

Declare the remaining nodes as local nodes. Be careful not to use names that are to be used as
global node names in the "main" network. In the example below, the indexed name 'o' is used
to represent all the individual indexed rodes o.0, o.1, o.2, ..., o.10 (formerly outO, out.l,
out2, .. , out.10).

Here is the listing of a possible macro definition for the ten-bit shift register, derived from the shift

register's network description:

(1) MACRO 10-BIT SHIFT REGISTER

; THIS MACRO MAY BE CALLED ONLY WHEN THE 'LATCH' AND

*MSFF" MACROS HAVE BEEN DEFINED OR LOADED

PREVIOUSLY.

; (2) MACRO DEFINITION

(macro shlftreL_10 (output i i) 

; (3) NODE DECLARATION FOR THE NETWORK

(loc o)

(4) LOOP CALLING THE MASTER-SLAVE F IP-FLOP 10 TIMES

(repeat 1 10

(malt oj o.(- 1 1) cl)
)

(5) ASSIGNING AN ADDITIONAL NAME TO NODES o.0
AND o.10

(connect In 0.0)

(connect output o.10)

; CLOSING PARENTHESIS FOR THE MACRO.

) )

After defining the macro, you can add it to the library ILbht and use it in the same manner as you

have used 'latch' and "msff.

UW/NW VLSI Release 2.1 -17 - 04/18/85

5,L



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

3.2.3. Sizing of NETLIST Functions with Two or More Transistors (CINVERT, CLKINV, etc.)

In section 32.1 the NETLIST functions "cinvert° and "clkinv" were used to define the macros 'latch'
and "msf*. We did not specify any gate sizes there, so the default values were assumed. You will see
here what the default values are and how they can be changed.

In NMOS functions, such as inverters, NANDs, NORs, etc. (represented by the NETLIST functions
'invert", 'nand', "nor') each individual transistor can be identified by the node to which its gate is
connected. This is either one of the input nodes, or, in the case of the depletion-mode pull-up transis-
tor, the output node (since the gate of a depletion-mode pull-up is connected to its source, which is
the output). You can specify the gate size for each transistor by specifying width and length together
with the node to which the gate is connected in the following manner:

(invert (out width-o length-o) (in width-i length-i))
(nand (out width-o length-o) (inl width-1 length-i) (in2 width-2 length-2) ... ).

Thus, (invert (out 4 6) (in 8 10)) creates an NMOS inverter whose enhancement-mode pull-down
has a gate area of 8 by 10 lambda, and whose depletion-mode pull-up has a gate area of 4 by 6 lambda.
The case is similar for the 'nand' and the "nor', the only difference is that you have more than one
input. The default gate sizes are 2 by 2 lambda for an enhancement-mode transitors and 2 (width) by
8 (length) lambda for a depletion-mode transistor.

In CMOS devices the situation is different. Normally an input connects to two gates - one gate of a
p-channel transistor and one gate of an n-channel transistor. This makes the sizing specifications
somewhat more complicated, since a node does not any longer uniquely identify an individual transis-
tor. NETLIST permits you to specify width and length together with a node as in the NMOS case,
e.g.,

(cinvert out (in width length))

However, these values determine only the gate width and length of the r-channel transistor and the
gate length of the p-channel transistor. Defaults are 2 lambda. You can set the width of the p- hanel
transistor to a multiple of the width of the n-channel transistor with the command

(ratio value)

which must precede the function it is to affect. For example,

(ratio 3)
(cinvert out (in 4 6))

- sets the 'ratio' for "cinvert" (and all following CMOS functions until the next "ratio' command is
encountered) to 3. The n-channel transistor (pull-down) of the inverter gets a gate area which is 4
lambda wide and 6 lambda long. The the p-channel transistor (pull-up) gets a gate area which is 3 4
=12 lambda wide and 6 lambda long.

- The default "ratio" is 2.

If a node connects to only one gate, width and length of the gate area are set in the same manner as

--,- .-=We did not uns them but concentrated on CMOS functions. [U you want to know more about them, se

the NETL[ST User's Guide.

'/NW VLSI Release 2.1 - 18- 04/18/85

o.... .. . .. . . . . .. . . . .



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

'"" described above for NMOS. Thus, in the case of a clocked inverter, you can specify the dimensions of
the gate area of the two transistors connected to the input node in the same manner as in the case of
.cinvert', whereas the dimensions of the two transistors whose gates are connected to "cl' and "cl-' are

specified independently:

(ratio 3)
(clkinv out (in 4 6) (cl 8 10) (cl- 12 14))

The gate dimensions of the two transistors forming the inverter are the same as in the 'cinvert" above.
The gate area of the p-channel gating transistor connected to 'cl.' is 12 lambda wide and 14 lambda
long, the gate area of the n-channel gating transistor connected to cr is 2 lambda wide and 10 lambda
long.

The sizes of the other CMOS functions available in NETLIST are set in a similar manner (see NET-
LIST User's Guide).

4. Circuit Simulation with RNL

RNL can take its command directly from the user's keyboard or from a file or a mixture of both.
There is a certain amount of information that must be supplied all the time: which standard libraries
should be used, which network to read, where to store the result of information if that is desired
(most of the time) etc. Then the timing or pattern information must be added. In most situations you
want to create a file with all standard simulation set-up information (which we will call the 'control'
or '.i file) and another file which is called by a command in the control file containing all the timing
information of signals to be applied to the circuit under test. It may be of interest to first exercise the
circuit in the fully interactive way as shown in sections 4.1 and 4.2. A number of utilities have been
designed which will allow unsophisticated users to define set-up files and pattern files without having
to worry about lisp syntax at all. These utilities are discussed in section 43. It is not necessary to
work through sections 4.1 and 42 to have sufficient understanding for working on section 4.3.

4.1. Interactive Command Input and Batch Command Input

You have now completed all the necessary preparations to run a simulation of one of the circuits

described previously. We will run RNL and start out with our simple inverter.

r l <CR>

RNL comes up with its version number

Vnk 4.2

and waits at the beginning of the next line for your command input. (RNL does not have prompting
sign.) Every command you enter now is immediately executed and, if necessary, commented by RNL.
This is why this mode of operation is called the interactive mode. Correspondingly. this way of enter-
ing commands is called interactive command input.*

utm in cae you want to exit RNL, the command to leave RNL in an orderly faubion is (adt) or simply
V 1t.

UW/NW VLSI Release 2.1 - 19 - 04/18/85

4o



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

Before starting on your simulation, you must load the two files uwstdJ and aawsimJ , containing func-
* - - tion definitions for RNL.

(load .awstdr) < CR>

dew.

* (load uOwsmr) <CR>

loseimg uwulul

Dow ning uwuJm

(The loading of the aawstd I file is implied).

Next, load the binary network description file inverter.

(read-network bivettee) < cR>

RNL will prompt with information about the network:

I uedes; trnslss: ash-0 Itrie-0 peh. dep-Glew-poer-1 pullop-6 mru-4

There is a simple command (es' - we will use it shortly) to run a simulation step for an amount of time
defaulted to 100 ns. To change this, a variable Incr can be aet. Inct 0 0.1 na is the new length of the
of the simulation step. For example, an iacr of 10 results in a simulation step length of 1 ns. The
command to assign a value to a symbolic variable' is (.stq mymbol value).

Let us carry out the simulation in steps of one nanosecond. Set betr to 10 so that the product of
* fincr' and the internal step width is 1.

(ustq betr 10) < CR>

RNL echoes (returns) the value assigned to incr.

* Frequently it is convenient to refer to a group of nodes, rather than to one individual node. You can

*strictly speaking. iner i. a LISP symbol. Symbols in LISP are aom quite the same a variables in other
programming languages. In many caon however, us with 'ince, they act J=s like Ocoeventlonall variables.

* We therefore will frequently deSpate avariables objects which should strictly be called symbols.

UW/NW VLSI Release 2.1 . 20. 04/18/85



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

% denote a symbolic name for a list of node names with "setq'. We will give the name 'nodes" to the
list of the two nodes 'in' and 'out'.

(setq nodes '(1n out)) <CR>

(i. at)

Again, RNL returns the value it assigned to the variable, which is the list (in out).

The final step is to specify details for the reports on the simulation step. There are two standard
report forms available in RNL.

The first type of report lists the state of nodes whenever this state changes. We want to obtain such a
report for the changes in our "node, i.e. 'in' and 'out. Each node has a "change-flag! telling RNL
that such a report is requested. For a list of nodes (nl, n2, ...), this 'change-flagr is met with the com-
mand (chflq '(l .2 ...)). Since we have already defined a list of nodes (in out), named "node', we
can enter

(cbfIlag nodes) < CR>

t

RNL has now set the change-flags of 'in' and "out, to true.

The second type of report lists the state of nodes at the end of a simulation step. To obtain such a
report on the nodes 'in" and 'out', use the "def-report" command:

(def-report '('STATE AT END OF SIMULATION STEP" In out)) < CR>

M'STATE AT ED OF SIMUlATION STEW b ad)

The capitalized text in quotes is the title of the report. It is followed by the names of the nodes that
are to be included in the report.

Now try a simulation. Setting the input of the inverter to high potential* is simply done by entering

h In <CR>

° We will frequendy refer to higb potential a High, and to low potential as Low,

UW/NW VLSI Release 2.1 -21- 04118/8S

. . . . .



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

RNL's reply oi means that it carried out your command. (From now on, we will not mention this
"one*.)

"h is the mnemonic for High. followed by the name of the node to be set to High. (You can specify
more names, separated by a blank).

Run a simulation step by entering the mnemonic s:

S <CR>

In accordance with your specifications in chfiag and 'def-report', RNL wil reply:.

bin-In 0 •w
ut-I @ 0

eat-SO 0 *

STATE AT EN OF SIMULATION STEP

houw dme-I

After starting up RNL, the starting time for a simulation is always set to zero, so your first simulation
step begins at 0. The reports on changes in the states of the nodes 'in' and "out" show that 'in" was
set to High at time zero, and that 'our changed to Low at 0.6 n. This is exactly what an inverter
should do. The time delay in the change of the output is caused by the time needed to load the gate
capacitance of the inverter and the time needed to unload the output node capacitance of 03 pF (see
3.1.1). The report at the end of the simulation step tells you that the time is now I ns, and repeats
the state of the nodes 'in and gout', as required in the "def-report" command. (For other com-
mands to run a simulation step see RNL User's Guide).

Now consider another state of the inverter, set the input to Low ('! is the mnemonic for Low):

I In <CR>

and do a simulation step:

S< CR>

Su bb.,m

11 boom 0 1m

ITATE AT END OF MUILATION STUP:

Cor" ta.- 2

a-r o1nt-

The report given by RNL is analogous to the one just explained. This time the simulation starts out
IN. at 1 ns with the input set to Low. The output changes to High at 0.6 ns (relative to the starting

.JW/NW VLSI Release 2.1 22- 04/18/85
U%



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginncrs

point of the simulation step), again the delay is caused by the gate and output capacitances. At the
end of the simulation step the time is 2ns, 'in' is Low and "out is High.

RNL uses three different logic states to characterize the potential of a node. They are:

High, symbolized H, with the value 1. Logic high is assumed whenever the simulated voltage
level of the node is between a high threshold VN and 1.

Low, symbolized L, with the value 0. Logic low is assumed whenever the simulated voltage
level of the node is between 0 and a low threshold Vj.,.

Undefined, symbolized X. An undefined state is assumed whenever the simulated voltage level of
the node is between a low threshold V&. and a high threshold a high threshold Vh.

You can set any node to one of the three states with the following commands:

h Set the node to High (shown above).

I Set the node to Low (shown above).

u Set the node to Undefined.

i Setting a node in this way has the effect of connecting the node to a voltage source with zero (-. "
impedance, thus overriding any other value the circuit might try to impose. Nodes with their values

* fixed in this way are called input nodes (because they are used like an input to a circuit, and RNL
. internally puts them on an 'input list). They will stay at the assigned logic level until you release

them. You release nodes with the command z, followed by the names of the nodes you want to
release. After the node has been released, it is free to assume whatever level it wants to assume
naturally in the circuit (it will assume this level after an 's command is executed).

The simple example of the inverter has given you a good idea of how to "operate' RNL in lateoctive
mode : You enter a command and receive an immediate reply. Now exit RNL to prepare a 'batch"

,- command file:

et <CR>

You are back with UNIX.

There is one other mode of RNL operation which we shall call batch mode. You can write any
sequence of RNL command into a file and specify the name of this file as a parameter when you start
RNL. We will call this file 'RNL command file", or simply command file. You will almost always
want to have such a command file to save yourself the work of keying the "load", 'red-network', and . -
other commands that are invariably needed to set up the proper conditions for a simulation.

IV'V/NW VLSI Release 2.1 - 23- 04/18/85

"""""" "'" . ...... . . ........... -. ,..;".... ._.. . .'.-...-- - --- -...-..'.." -.... " ' -- "." -' '



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Bcginners

To see how the command file is used, write the first seven of the above commands into a file
" . inverterJ:

(load "uwstdJ")
(load "uwsiml')
(read-network "inverter)
(setq incr 10)
(setq nodes '(in out))
(chnag nodes)
(def-report '(*STATE AT END OF SIMULATION STEP-! in out))

Now run RNL again, with the command file iaerterJ as a parameter:

, rut Inverteri < Cit>

You will get almost the same replies as before when you entered the commands interactively. (The
only difference is that returned values, such as the 10 in (setq incr 10), are not shown.)

Now set the input High and run a simulation step, then set the input Low and run another simulation
step. Again, you will get the same answers as before.

In order to set up the proper conditions for a simulation, most commonly one starts out with the exe-
cution of the commands from a command file and then continues in interactive mode. RNL LISP pro-
grams for time-consuming simulations may be developed in interactive mode, written into a command
file, and later run in batch mode.

We will do the simulations of the shift register in this mixed way in the next sections.

4.2. PractIcing RNL Simulations - The Shift Reglster

You can modify on the command file prepared in the previous section and use the modified file when
we start up RNL for the simulation of the shift register. Write the following modified commands into
the file s/sftJ

(load "uwstdJ.)
(load "uwsiml)
(read-network 'shift')
(setq incr 100)
(setq nodes '(in out.10 cl))
(chfiag nodes)
(def-report '(STATE AT END OF SIMULATION STEP!' in out.10 cl))

Now run RNL again with shifJ as the start-up command file:

,rl slwtj <CR>

UW/NW VLSI Release 2.1 -24- 04/18/85



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

RNL's reply is similar to the one discussed in the previous section.

Let us do some initializing and propagate input through the shift register ((1) through (17)).

(1) Initialize the network

When you start up RNL, the state of the nodes is Undefined, ie. neither High nor Low.
This state, symbolized "X', is not very useful at the outset of a simulation. It is preferable to
start with a definite, stable state. The (sim-init) command tries to help you with this. It
returns the number of all Undefined nodes and then sets them to Low. In this case, 52
nodes were set to Low. If the number of nodes set to Low was not 0, you should do a simu-
lation step and propagate the new values through the network (we will do that in (2)). If this
leads to Undefined node values again, do another (sim-init).

Repeat the mequence of (dr-lnt) eowed by a hmlabdon step ntI (sirn-loi) returns S. If
you cannot settle the network in this way after four to five repetitions, RNL might not been
able to simulate your design properly (for example, if a an input signal and a feed-back signal
derived from this input simultaneously drive a node). In such cases refer to section four of
the RNL User's Guide.

(2) Simulation step to propagate the nodes set to Low

5"p bes" J 9 ns.
* o 3, la-I@6ah.

euLlO-6 6 04

*TATZ AT IND OF UIMAJlA11ON 8
Cvrint tn.- lO

12-6 MI..A- el-S

As a result of propagating the Low nodes from the previous (sim-init), out.l0' changes twice
during the simulation step. The reports are analogous to the ones explained in the previous
section.

41/NW VLSI Release 2.1 - 25- 04/18/85

7:..



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

... (3) Next initialization step.

(am1-aIt)

0

This time the number of nodes set to Low by (sim-init) was 0, i.e., the network had been
settled to a stable state with the commands in (1) and (2).

(4) Simulation step to propagate the nudes set to Low.

am pbq0M. 0 H a&

STATS AT END OF SIMULATION STEP:

Catrms tm- 26

0. 6ut0l, e1--

doe

As expected, no changes occurred in this step (no nodes were changed in the previous (sim-
init)). Reports as usual.

(5) Give a name to a group of nodes.

(stq all modes '(In out.1 out.2 out3 out.4 out,
ont.6 oat.? outS out.9 "t.10))

On (o@uet- out 1) (-Muer- so 2) (-sruer- so 3) (-gruet- ou 4 ) (.sbut- out 5) (-utrue- t ) ()truet- out 7)
(-sa&- "u8) (OUue- =2t 9) (4u-out 1))

We give the name "allnodes" to the group af nodes forming the shift path. RNL returns its
internal representation of this list of nodes.

[Iq (6) Set the change- fag for the group of nodes.

(chtlag allnodes)

i qUWINW VLSI Rclease 2.1 - 26- 04/18/85



* ~ ~~~~~~ ~ P I Z ~ -- s-- w C .r r c r S - ~ -. r r .-.

*UWINW VLSI Consortium NETLIST & RNL Tutorial for Beginners

(in (-auwtso t 1) (.utriuet- min 2) (-etrnct- out 3) (4mres- sat 4 )(-etrnel- so 5) (-isert nctsu 6) (-strnet- out 7)
(-srug- out 5) (-etrnet- ems 9) (utrut. out 10)) -5

This command sets the change-flag for each node of all-aodes.

We could have used the command
(chilag '(in out.1 out.2 out.3 out.4 out.S

out.6 out.? out.8 out.9 out.1O)

to achieve the same result, but instead used the symbol all-modes to give an example of the
usage of a name for a group of nodes.

(7) Set the clock input to Low.

I e

Step begins @ 20 as.

STATE AT END Of SIMULATIOW STM:

coumit asso- M

k3-6 o".1" dl-4

The clock is set to Low, followed by a simulation step. Reports as usual.

(8) Set all nodes in the shift path to Hligh.

(repeat 1 16

*UW/NW VLSI Release 2.1 -.27- 04/18185



UWINW VLSI Consortium NETLIST & RNL Tutorial for Beginners

"tJi-i@S

mt.7-1 @64

=tA-1 @

mtA-1 6

STATZ AT END OF UIULATION 3TM:

Cormt ti.- 46

The repeat command is similar to the one in section 3.22, where it was used to make a shift
register from ten ms-flip-flops. Of course, the body of the loop is different here. It is the
command

(b '(out.(eval 0))).

There are several peculiarities in the form of this command (which you have already seen in

its simpler forms, eg. h out.1).

RNL LISP has a syntax simplification which permits you to write

command argument I argument2 a rgument_3..

instead of

(command '(argument 1 argument 2 argument_3 ...)

Therefore, h out.10 is equivalent to (bi '(oo.1)).

However, the simplified syntax may not be used if the command is part of another command,
such as inside the "repeat'.

The (oval 1) is needed because RNL does not evaluate a symbol if it is preceded by an apos-
trophe ('I. (eval 1) returns the value of ji", which varies from 1 to 10.

Since we set the change-flag for 'all1 node?, RNL reports all the changes in the correspond-
ing nodes' values, followed by the usual final report at the end of the simulation step.

*UWINW VLSI Release 2.1 - 28, 04/18/85



UWINW VLSI Consortium NETLIST & RNL Tutorial for Beginners

* .'(9) Apply one clock cycle

S"e boom 646 ..

STATE AT FND OF SIMULATION STEP:

10=1 "iLIS-1 cl-I

dew.

I d

Stop boom 0 S 65m&

* STATE AT END OF S~IULATION STEP:

luImt.1N=I el-IG

dew

We set the clock first to High, then to Low, each time followed by a simulation step. This is
equivalent to a clock cycle of the length of two simulation steps.

(10) Release ail nodes in the shift path.

* .(repet 1 0 S
* - (z '(out.(eval 0))

UW/NW VLSI Release 2.1 - 29- 04118/85



* UWINW VLSI Consortium NETLIST & RNL Tutorial for Beginners

Suap boomn 0 60m
STATE AT END OF SIMULATION STEP:

Cotrm tflm 76

1u-1 MUGt.l61 c1-4

dom

Recall that we have set all the nodes in the shift path to High (8), which is equivalent to con-
necting them to Vdd. By setting them to ', we enable them to assume whatever state they
may naturally go to in the course of the simulation. Thus, the "repeat' loop releases all the
nodes in the shift path of the register.

(11) Set input to Low.

I In

dom

S

Stop bqu u70 m. In-$ S

STATE AT END OF SJMU!ATION STEP:

Cunmt tim 8

1- uut.l6-I d-O

do..

With the previous steps, all the cells of the shift register have been set to a state of High.
Now we set the input to Low in order to later watch this Low signal shift through the regis-
ter.

. (12) Shift the Low input for one clock cycle

b cl

Step begios @ 10 ns.

UW/NW VLSI Release 2.1 -30- 04/1&85

i o. . + . .. . +• o• .. . . . . . . . . . . . . -' . ° " ." . , " " "" "



UWINW VLSI Consortium NETLIST & RNL Tutorial for Beginners

STATE AT END OF SIMULATION STE:

0-0 6.19i-1 el-i

-awn dim- I

dn

is

ft25 0-10v-J)MKS f teu

in

eutI-1 (v-OJI yb-GJI) (GA3110U PC) d~effet

imp"t te ouctine 1. t. reewing 8Md.
39
it

2
2?m

6- n cokccl hft h owfo teipt oteouptoftefrs eise el.A h

first thre fclso thelb regise.gme.

*WN VLIRlae21 3-0/88



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

I provides the values of the specified nodes, their logic thresholds (normalized to 1), and
their capacitances. Next it provides the names of all nodes to which the nodes specified with
I are inputs. In the example, these node names are numerical. The numerical node names
were assigned by NETLIST to nodes inside the shift register. They were not declared in
shiftjwt but came with the 'latch' and "msff* macros. (If you want to know more about
them, you have to scrutinize shift.uim.)

(? (question mark) is a command similar to .. It provides information about transistors for
which a node is either gate or source, and about the sum-of-products representation of the
node. See RNL User's Guide for more information.)

Using I (and ?), you can "walk' through the network and check node values and connec-
tions.

The listing produced by I shows that the Low input has moved to "out.1, as it should have
after one clock cycle.

(13) Shift the input a second clock cycle.

h C1

do-

Stup bqlfs IN i-

d-1O O

STATE AT END OF SINU[ATION 5TI[:

Vu1ms tU.- Its
o- Oi,1W-I d-I

Id

do-

S"boom 0 INl W.
d,- h~.O IS..

d-I 0 0.

STATE AT END OF S/IMIATION STZ:

UW/NW VLSI Release 2.1 -32- 04/18/85

"- ... .......... .-.... ,...- ...... . . . •%



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

Cuamt tine- in 18-41su.19-1 el-41

dew

I ou.1 out.2 out.)

int.I-L (vt-U.N yb-ON) (1.53565 pt) drum:

luput to ruetions te the reewing Miles:
is

mL2-L (vi -IJI yb-$US) (61.634K p1) .11mm

input to ruetioter the reewing nsm
27
27

6"j-1 (vT-"J Yb1-41N) (MSNIN 10 strum

impel to lutlgms ter the reewing Om.
30
3,
22
33

dust

Reports analogous to (12). The Low input has now moved to "out2.

(14) Shift the Low input a third clock cycle.

asop bo0In@ Ms3.

STATE AT ENM OF SIMULATION IW

UW/NW VLSI Release 2.1 -33- 04/1185



UWINW VLSI Consortium NETLIST & RNL Tutorial for Beginners

1.44 int.19-1 d-1

I et
dae

Step boom 0 13 as

d-O@0

tJ-4 IN.
STATE AT END OF SIMULA111ON STP

Cowmt time- 146

1.0 0a.th-1 d-0

dae

I ont.1 0,1.2 032.3

ent.1-L (yI 46 A-0.80) (OAMM pt) affart:

is

=L3 L (yI. wh b4U (G.nM91 p1) affect

input to I'uactamser m e fellolmg made.
27

27I

ewt3-L (v"14S wb-4.31) (116311411 pf) affect

Input is fasuctems for the feelwlua miae

39

dne

Reports analogous to (12). The Low input has now moved to 'outY.

.W/NW VLSI Release 2.1 .34- 04/18/85



UWINW VLSI Consortium NETLIST & RNL Tutorial for Beginners

(15) Do seven more clock cycles to shift the Low input completely to the end (Qut.1O) of the shift
register.

(repeat 1 1 7

(b '()
(8 Wc))
(I '(d))

(8) W

lSup bamm 146 We a el-lOS STAIR AT END OF SIMULATION STEP*Cre dwmu UN In.-$ wtL1=

* d-I

lftp bhas 4 i 116s el-SOS @NA-4 06.3 STATE AT WED OF SIMU1LATION STE]P: CArm U.- 160
in-@ ot.11-l el-S

lSup b~ogo 16 Na. eI O STAR AT WED OF IMULATION 1TP Correa Urnv- 175 In-@ vat.1-1
el-I

Suep bequuO 176 a& el-OS1 @NJ-* 05.5 STATE AT WED OF SIMULATION STEP: Carm.S Urno- 165
fu-S mt.IS-1 el-6

ltop boomn 36 IN a el-I OS0 STATE AT END OF SIMULATION STEP: Catm Urn- IN lu-S mL1S-I
* el-I

lamp be&@. 19 In a el-SO4 S @NJ-$ @ 6.3 STATE AT END OF SIULATION STEP: Correa Urn- MS
In-* at.1S-I el-S

lamp bqlui 0 Ma el-I OS0 STATE AT END OF SIMULATION STEPt Comet Urn- 216 In-* wt.1-
el-I

lSp bauu 0216 a& el-SO S emt.l-S 06.6 STATE AT WED OF SIMULATION STEP. turineU.- 23S

* Stop bogtu. 0 226a& el-I OS1 STATE A? END OF SIMULATION STEP Currma dm- 23 lu-S .LIS-1
* el-I

S" ep h.s 0 22a. el-O S 6 L6-f 05.3 STATE AT WED OF SIMULATION STTa Crmat Udm- 246
lu-S 6.191 el-S

Stop bW 01246 a& el-I OS0 STATE AT IND OF SIMULATION STEP: Cmm.Su e- 298 to-@ mt.lS-I
el-I

Slop b.w 4i 03N3s& el-4O S1 eiS 0 U STATE AT END OF SIMULATION STE: 101200- U a-"
In-S 6.6.16-1 el-S

* Ste bo 0 205 v. el-I OS6 STATE AT END OF SIMULATION STEP: Cae doo- 276 is-0 ent.16-1

*Stop bom 0 276 a& d-I OS6 oue.M-S 051 STATE AT SMD OF SIMULATION STEP: Canm U..o-
6 lW-S 00.lS- el-S

UW/NW VLSI Release 2.1 .35- 04/18/85



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

(The simulation report is printed more compactly here to save space. Otherwise it is analo-
gous to the reports in (12) through (14)). At the end of each clock cycle the Low input
appears shifted one more cell toward the output. After the last clock cycle, it has reached
"out.10'.

(16) Define a clock function with the number of cycles as a parameter. The function is called
-cycles-.

(defa cycles (a)
(repeat I 1 a

(h '(cl))

(u '(x))
(I '(d))
(s '(k))

)
)

"defun" is one of the most useful functions in RNL LISP. It enables you to define your own
functions that can subsequently be used in the same straightforward way as all other RNL
functions. 'cycles* illustrates this point. "defun" is followed by the name you give the func-
tion, which, in turn, is followed by a list of parameters representing the arguments to the
function (see also (17)). The body of the function definition is made up of other functions or
sequences of functions. In the case of "cyclee, the body of the function definition is a
vrepeat" loop that is to be iterated a times. In the next paragraph you see how easily one can
specify a sequence of a clock cycles with this newly defined function. (RNL has a clock
function "c, which you could have used instead. We defined our own clock function here in
order to illustrate the power of "defun. Another important function for you to explore with
the help of the RNL User's Guide is 'do'.)

(17) Set the input to the shift register to High and propagate it through the shift register for four
cycles, using the "cycles function. Then look at the outputs of latches 3, 4, and 5.

din.

(eyeks 4)

OW bes8 @2N w. elI 60 Jn-lO0 STATE AT END OF SIMULATION STEP: CWaa duo- SN u -1
'W W VLSI elS el.-

3UW/NW VLSI Release 2.1 - 36- 04/18/85



UWINW VLSI Consortium -NETLIST & RNL Tutorial for Bcginners,

Stap hesau 21 M a. d-O@ I mt.1 0 1.2 STATE AT DND OF SIMULATION STEP: Curmiu da 300

Stop beglm. NO m0 m. dl-I @6 STATE AT END OF SIMULATION STEP: Cutrsot U..- 316 1.-I out.10-0
el-I

gsp booms IN3163.s. dl-0 @6 1 .2-I a 1.2 STATE AT END 0F SIMATION STEIP6 Cormot U..- 320
Iu-I =L144 el-4

Stp besim 0 3nim el-IOU STATE AT END OF SIMLATION STEP: Curmt tdw- 338 1.1 eut.16-0
el-1

Step begins 0 338 as. dl-OS 4 =Q-1 1.2 STATE AT END OF SIMULATION STEP. Curt do..- 346

Step booim G 349 ms. el-I 5 6 STATE AT END OF SIUATION STEP:- Curreut tsi.- 390 I-1 ost.16-
el-1

Step booms 53Wme. el-4 0O smtA-iS 1.2 STATE AT END OF SIMATION STEP: Carrs U..i- Me

I ent.3 Out.4 mtJ
mswt-U (u10.3S eb-eil) (6UON p11 31Isam ispU to mint..es Ia, 6b. 48swnmaim N 3

32 32

mI.4-N ~ ~ ~ ~ ~ ~ ~ ~ ~ Mee $1tO. YbOl lNNp)afeatplt U frtelfabmii si
44 44

ast.5-L (vi *J1 Yb -. 09) (6.0304 p1) offedo Input to fesedes for the fellewlu mom a3 63

At the end of (16), all the cells in the shift register were at Low. After setting the input to
High and applying four clock cycles, the High input should have arrived at "outA4. The
function 'cycles' made it very easy to apply the clock cycles. The result is as expcted.

(18) Open a log-file to record the activities of the RNL session. Define a node vector and change
the report at the end of a simulation step using the vector.

3'NW VLSI Relcasc 2.1 .37- 04/18/85



UWINW VLSI Consortium NETLIST & RNL Tutorial for Beginners

(log-mie 'shift jog)

(ddoc o '(bin path In 6*t1se out. ot oot4 atJ
omt.6 out.7 outJ out., ot.1O))

(bis pah <nedelu-H0> cfhdeeuLI-R1> <seieuL2-H> <ned*mL3=D>
<ued. .t.43> <muds t.S-L> <n&MednA-L> <nmuak=L7-L>
<nde mt.5-L> <nude evt.-L> <muds ot.16-L>)

(dot-report '('State of Shift Path: *(voc path)))

C'lme d Shift Feth: (012 peth <eD& b'fl> <mems mut.1D>
<mus ut2-l>C ed.eutS-fi> <w*Mad uA-f> CmAe*MJ.-L>

cued. .mt.6-L> <n*Mad u.7-L> C nude ti-L> <made e=t9-L>

Stop begin 0@368 .
Stae d Shift Path:
Vurst One 370

The 'log-file" command has the effect that the file shidftlog is opened and that all subse-
quent terminal activities will be recorded in this file. You can later analyze this file or edit it
to keep parts of your interactive RNL session for inclusion in a control file (J file). The
number returned is the file identification (ID) of shlft Jog. You can close the log-file with the
command (log-file nil). Alternatively, the log-file will automatically be closed when you exit
RNL (we will close the log-file in this way).

The 'defvec' command defines a data structure called a vector. A vector is a list of nodes.
* The value of a vector is determined by the value of its nodes. For example. if a vector has

three nodes with the values 0, 1, 0 (Low, High, Low), the value of the vector would be 010
binary, or 2 decimal. There are a number of commands operating on vectors, eg. asigning a

* value to a vector (see RNL User's Guide). The vector definition has the format (defvec
'(base name node 1 node -2 node 3 .. ).'base is the base of a number system and
can be bin for binary, oct for octal, hex for hexadecimal, and dec for decimal. When the
value of the vector is printed, it is given as a number with the base given in *base' (see 'def-

* report' below). "name" is the symbolic name of the vector, which is "path! in the example.
'node 1', 'node 2 , 'node 3', ... are the nodes of the vector. In the example they are "in',
*1out.r,1 '1out.2, ... The list returned after 'defve is the internal representation of the vec-
tor.

The 'def-report' specifies a new format for the report at the end of a simulation step, thus
overriding the 'def-report' given in the shiful file (however, this does not influence the
reports on value changes of nodes marked with 'chiflag'). With (vec path) you specify thc
inclusion of the vector 'path' in the report (for more variations of the 'def-report', see RNL

NW VLSI Release 2.1 -38- 04/18/83



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

User's Guide). A simulation step following the report definition illustrates the new report
format. Since the base given in "defvec" is binary, the vector is printed as a binary number. -. -

The first two characters, Ob, indicate the base (they would be 0 for octal, Ox for hexade-
cimal, and none for decimal). The binary vector representation provides a good 'visual' pic.
ture of the shift path. The input and the first four cells are High, the other cells are Low.

(19) Open a file to store RNL output ('behavior file) for subsequent printing on a Printronix
printer. Then shift an input signal through the shift register and exit RNL. (The RNL out-
put in the "behavior file will be analyzed with the program MTP).

speoplet "alfftbeh

i

Is

(eycls 1)

h,..

(cydus 1)

Ills

(cycles 1)

(cych. 16)

After the file shift bel. has been opened with the "openplot" command, information on all
nodes whose change-flag is set will be stored in this file until the file is closed with c€loeplot °.
Termainating IRNL with "euit" will automatically close the file, in which case no c€loseplot" is
needed. ('openplor returns "nil" after opening the plot file. The responses for the com-
mands following "openplot" are reports similar to those already discussed and have therefore
been omitted in the above text.)

Recall that we set the change flag for "nodes" witl the control file shifsJ. Later we interac-
tively set the change-flag for "allnodes. Therefore, information on the following nodes will
be stored in shluJbeh:

in cl out.1 out2 out.3 out.4 out.5'S'

out.6 out.7 outS out.9 ot.lO

UW/NW VLSI Release 2.1 - 39 - 04/18/85

IN IN



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

To obtain a signal that can be easily identified in the printout, we apply a pulse at the input
of the shift register by setting the input Low, High, and Low again, each followed by a clock
cycle. Then we shift this pulse through the register with ten more clock cycles. With the last
command we exit RNL.

4.3. Definig Control and Stiulus Flies the Easy Way.

The definition of control files for RNL is generally much more difficult than defining netlists for cir-
cuits. The reason is that many more lisp commands are necessary in the definition of control files. Two
programs have been defined to substantially reduce the need of understanding lisp, although the user
may benefit from understanding lisp. The first program is called 'GENCONTROL'. It is intended to
create a set-up file for a circuit using answers to the questions asked by this program. It formats the
answers s that the output file can be read by RNL.

The second program is called 'GEN TIME'. This program uses a description of patterns in a very sim-
pie format, without the poisonous lace of parentheses and quotes and creates an output file which can
be called by the control file created with the gen-control command.

A couple of conventions:

GEN CONTROL will create a control or *.1 file: 'basenanv'.

It expects a network by the name of 'baename'.
Results will be stored in the 'basexweJos' file.
and the information for plotting is stored in the

'basne e A'

Furthermore, the pattern information file will have
the name 'basenanwtime'.

By the way, the user will be prompted for the actual 'basename' name.

GEN-TIME will use the 'basename.stim' file as an input file and create a 'basene. ine' output file.

4.3.1. Uslig GEN-CONTROL to Generate a Control File.

Assume you created the shiftregister defined in section 3.23. and you have the network file sh$e.
Now run in the same directory:

% gen entrol (no arguments).
The response is:

Rnsmwetde Smor/o of eostail Mae for RM4.
UW/VS1 CONSORTIUM VEIsION.
Flhunm. miedm mm ,,,d '1'. 'iule'. 'bi~'. 'Jleg' "

The first prompt is for the basename of the circuit; GENCONTROL will assume the conventional
extensions as discussed before. Each response to the prompt is terminated with a <CR>. In this
case type:

L~-. 'C-.- shift< CR>
The second prompt is for a comment line to be included in the control file for identification

UW/NW VLSI Release 2.1 -40. 04/18/85

" *- .. . . . . . . . . . . .. . .. . . .... .... . --. - '



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

purposes:

'1.1w my emtont i1" ( chaecterm mw) ye wish:

For example type:/

this is a shiftregister test circuit< CR>
The third prompt is for the duration of every simulation step in 0.1ns units.

'a.1 the due nmab. for d.iU.oM in 6.1 ma "tm

- - Suer

For example respond with: 1ON< CK>
The fourth prompt is a definition of nodes to be defined as a unit in a vector. Vector definitions are
used in the def-repor and allow the user to print the state of clusters of nodes in a very compact
manner. Note that its only use is for state reporting purposes at the end of a simulation step. It has no
impact on the reporting on intermediate changes! Let us define a vector called 'state" with nodes
out.1 out2 ........ out.10. The type of this vector is simulation). By the way, the type definition only
affects the format of the report generated by RNL; it does not require that you use the same format
when using 'invec'! The prompt is:

Dudbe Ilpu vatr to idud t rnmu, It my.
Ropy with < CR> f m (omn) daflsitem requuil.

So respond with:

state< CR>
the prompt then is for the type:

OVete type (MUN~//et/ded/ba) -"..

So respond with:

bit< CR>
the next prompt is for the nodenames in the vector:

01t' d tho vemer dhitim (mue be lndulyldu mb umum),

secaed eme blmkipme sperk
uedui iu ,etr -"

respond with:

out.1 out.2 out3 outA out.5 out.6 out.7 out.8 out.9 out.10< CR>
Now you will be prompted again for a vector definition:

"Vsew -

There is nothing more to define, just respond with:

< CR>
Now you will be allowed to define vectors in a simplified fashion; for example the vector 'state' if
it could be re-baptized in 'out' can be easily defined as a single indexed vector, with starting
index '1' and number of elements '10' and the function will assume vector elements out.10
....out.1.

Since we already typed in the vector in the standard way, we will ignore this option and type
<CR>.

Getting even more sophisticated, we can use double indexing of nodenames and create several ..-.

defvec's all at one time. So a set of vectors are to be defined v.1 .... v-n (note no periods in -.

names of vectors.) with nodenames v.i.1 through v.i.m is easily accomplished by properly

* UW/NW VLSI Release 2.1 -41- 04/18/85

- - -- -



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

responding to ttae prompts for type, basename and values for n and m.

This option is not approprate in this example and we type again < CR>.

Next you will be prompted for the format of the report you want RNL to provide. There are in
fact two independent type of reports generated; one relates to the state of the network at the
end of a simulation step and the other to intermediate changes occurring in the network. The
answer to this prompt will only affect the report at the end of a simulation cycle. The report
includes comments to be printed, nodenames to be reported on and vectornames to be reported
on. The comment comes first, nodes and vectors in any sequence of choice. This format
definition must always be present in an RNL definition, otherwise you may not get any reponse
at all from running a simulation! The prompt is:

"Defulo the mutso med rpem d by RNL (rerd!d)
S.1. imd d tp by nedmil with < CM>

lbl IdI type by repindalg wilb < my .> CCt>

There can be two types of reports selected, one which is straight a set of nodenames and vectors
and the other which allows sets of ectors to be defined. We ignore this latter option and type
<CR>.

OZm9 eonut UM (it mny)

First respond to the request for a comment:
response = < CR>
(just < CR> is fine if no comment is desired)

The next prompt is:

ldmitfy te med. md vuerm to bo r t
In eM d a VatST, tyM *ee md yM win e Prmpd for Its n.
Typa a wedmm o 'yin':

Now respond to the request for node and vector names to be reported on; we would like to
show 'ca' and 'in':

cl in< CR>
The prompt becomes again:

Ty• medemme or 'Vne' "

since we still have the vector state to be included in the report format definition wc type:

vec< CR>
GEN-CONTROL now asks for the vectorname:

o % N mtner -

respond with the name of the vector state

state< CR>

The program then asks for additional vector or nodenames:

Typ. s admew or 'vw' :

Since we are done, we terminate the prompting for the report format by typing:

< CR>
Next we are prompted for logic analyzer style output. If affirmative, a lot of extra text is
removed from the output report from RNL and the output becomes pretty much tabular. For
example, instead of printing 'cl=O' only '0' is printed. RNL, before generating any output, will
automatically print the order by which the reported states appear. The prompt is:

IJW/NW VLSI Release 2.1 - 42. -04/18/85

"°

di'-_%o° - o- . o .. - -. .. % -. •o.% . , . .. . . - Cv- >o;% .. . . . . . :. * :. x . - -..- o -. ~



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

ODo y" wuh to Specify logiC Mly-r output (as < Ct>) ?

We respond by:

y< CR>
Next we are prompted by:

M ah to tarm an Itb doetlem (m CR>) 7"

If affirmative than the nodes which we will identify in the following prompt will only be
reported if they are subject to more than one change in state during a simulation cycle.

Let us turn this on too (later try what happens if you leave it off):

y< CR>
Now we are getting to the definition of the second type of report which can be generated by
RNL: reporting of intermediate changes in specified node states. When a node, which nodename
was included in the 'chflag' list, changes state: its name and time of change is reported either in
relative time (default) or in absolute time units. However, if the glitch-detection has been turned
on, this only occurs if the node changes more than once; the latest change is the one that is
reported.

Let us at least (with the glitch-detection on) report any glitches on the nodes indentified in our
response to this prompt:

out.1 out2 out.3 outA out5 out.6 out.7 out.8 out9 out.10< CR>

GEN-CONTROL comes back with a prompt for reporting intermediate changes. Like in the
case of defvec's we can enable individual nodes to be defined or sets of single indexed nodes or
even sets or double indexed nodes. We do not select this option here so only single nodenames
are entered.

The prompt is:

"Deindoe imdes with truanmat to be eptMed.
Nois em can delteid lodvldiny,
by SINGLE INDEXED vetar or DOUBLE INDEEO vecter,
Type nide aa, 'Vet', 'rat' or
< CR> 1 (o mere) mode to bo defld.

Entw sode mem, 'oe' or o° (or <CR>) :

Let us enter just the nodes straight:

out.1 out.i out.3 out.A out.3 out.6 out.? out 8 out.9 out.1O< CR>
The next prompt is:

*Cmouine with lIdllufd mode mnon or @ < C>:

Terminate prompting for nodenames by:
< CR>

The next prompt again is:

ter med. eo, 'ro' or 'Veel' (or < CR>):

Respond with: < CR>

Another option available in RNL is define a logic trigger condition, at which time you execute com-

mands in a special file. We do not select this option and we type < CR>.

We may want to define additional simulation set-up commands like print a message or whatever (now

V2

u.SW/NW VLSI Release 2.1 - 43 - 04/18/85



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

you get into lisp.) (if you do not want anything just type a < CR>); the prompt for this is as follows:

elf dedni, type eddite RNL dunatla. SET-UP emd Ila=
(f na Jt ty < Cl>; mu. atw lfm have bm entmal)}

We respond by asking that an announcement be printed when RNL has loaded all files and starts the
actual simulation:

(printf 'Let us start simulating now ... n ")< CR>
There is no other prompt until we terminate the loop by typing another:

< CR>
Next we are prompted for a timing information file:

"D ym Wish to Spctiy a a iftdw f o (a- <CR>) ?

Most of the time, also in this case, you want one generated by GEN-TIME.

Respond with:

y< CR>

(In fact: anycharacter< CR> will do;
just a < CR> means no)

Finally there is a prompt for a wrap-up command:

* 1el desiru, tMp adid WRAP-UP MN canmad Van
(If st Jo type < R>; m attw N.. ha bam =mtargi

You can type in the 'exit' command if you want RNL to terminate immediately after executing
the instructions in the 'utne' file (not recommended) or since we are fancy: a message saying
simulation complete:

(printf ....... simulation donekn ") < CR>

exit< CR>
There are no prompts until an additional < CR> is typed:

< CR>
Finally: GEN CONTROL indicates that it is terminating and that it has created a control file
with the name basenamel (in this case the basename is 'shift'):

GENCONTROL COMPLKrKD.
Cwrict emn s Ift.l wg an iard too @it1W'

You should look at this file with your favorite text editor and make corrections using this text
editor (GENCONTROL does not have any utilities for making corrections). You will note that
ali set-ups necessary for simulation are included, including the loading of libraries, reading the
network and defining the report formats with the proper syntax (notice where the quotes and
parentheses go). We have now completed half of the work: the definition of a timing pattern
remains to be done. That is the subject of the next section.

4.3.2. Generation of Stimulus Pattern Film.

Let us create a file called 'shiftjtim' using your favorite to,. editor. In this file we first have to define
the number of simulation steps in units of the value of 'incr'. Let us assume we want to run 50 simula-
tion steps, starting at 0:

The first non-comment line (comment lines start with a semicolon) contains:

Next we specify activities on the input nodes cl and in. Now remember that the first number after the
nodename relates to the period of the signal applied to that node. This is also true for vector typc

UW/NW VLSI Release 2.1 -44- 04/18/85

::~.. . . ..- . . : . - . " . . . . - " . .- . " .. . "- . . .. ', ,." "-



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

stimulus (invec and bitinvec). The clock has to run all the time, the minimum period therefore is 2; at
time 0 the clock goes high and at time 1 the clock goes low again. The syntax is: nodename period
statel timel state2 time2 .... (as many state changes you wish to define within the period). A value
for periods equal to 0 means in reality infinity: this pattern is a one-time event cycle. For the clock
signal this means the following:

cl2h 11
We have to specify an input pattern to in: let us start with setting in low at t - 0 and high at t = 15
and back low at t - 30. This results in the following command line:

IRS lOb 15 130
Finally, we MUST define how often we want the state of the network reported. Let us assume we
want a report every 2 time increments at the end of every 1st increment within the period:

report 2 1
(If you want a report at the end of every simulation step you type: report 10)

There are additional commands available for applying vectors, putting masks in to create bursts of sig-
nals and for including normal lisp commands. Refer to the documentation for those. Store the file in
'sk'ftstim' and run the following command:

gen time skitstin shit.te

This program terminates very quickly. Please inspect the skiftime file created by GEN TIME. You
will find that all signal activities are sorted by time increment and in a format suitable for RNL. In
fact the '.time' is for control what the '.sim' file is for a netlist description.

You are now ready to run the simulation; the command line is:

, rnl shkftj
see what happens!

Since we included 'exit' in the control file, RNL terminates; if we did not include this command, RNL
would be waiting f,'r additional commands from the keyboard terminal. Options are:

additional RNL commands (fully interactive mode)

exit (terminate RNL simulation and store the results in 'skiftJog'
^Z to halt RNL to allow definition of an additional timing file to start at the end

of the current simulation cycle (e.g. 50); thereafter you restart RNL with T'f'
and type: (load "addtt~ftle)

DO NOT TYPE ^C which will terminate RNL, without however
storing the results of simulation in 'shift.log'.

4.3.3. Tying AN tie Program Toether With a MakMe.
We have identified several program necessary to run a complete simulation. Rather than running
these programs individually a very simple makelle can do the same for you.

Remember that in this section, source ales that do not depend on outputs of programs are:

sAdlt.An for the defiitio of the eslist description and
* shUNtim for the sti ls des.riptio.

In the concept presented:
-s fJ is generated m so iteewlve famso by GEN CONTROL.

The rest is generated from them mapot Gles 7Ue make program keeps tabs on when those files have
been updated end rums certs prerosepm gsa. if cemsary. to Set a valid simulation result.

Include the makelile shone tn the ppndt tn the sam directory along with your other files needed
for simulation, with a test editor t the makefle mntitute N - wk ,er with N - shift (or anothcr
circuit bamnNe). Sek in the "ar e -1 t v,

NW VLSI Relent 2 1 45 04/18/85



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

Smake
and all missing files will be generated and if the source files are not present, it will tell you so.
There are certain arguments you may give to do only a portion of the generation of necessary
simulation files. Refer to the summary command list in the index.

4.4. Printiug RNL Output Using I(TP

The program MITP has been developed for printing the output of RNL simulations on the Printronix
dot matrix printer. MITP stands for Multiple Time-series Plot. From the behavior file produced by
RNL at the end of the last section a printout of the signals can be obtained in three steps. You have
to (a) create a file containing directives for NITP, (b) create a plot file and (c) send the plot file to the
Printronix printer.

(a) MI has been designed to plot a number of different kinds of behavior files in a number of
different formats. However, for the purpose of plotting the output of RNL only a few direc-
tives need be supplied. These are the following

START time

The START directive tells MTP when to start plotting (in nanoseconds). If not supplied
its default value is 0. Data is skipped on the behavior file until an event is found whose
time is greater than or equal to the START time.

STOP time

The STOP directive tells MTP when to stop plotting (in nanoseconds). STOP has no
default value and must be supplied. If the STOP time is greater than the time of the last
event on the behavior file, the plot will be concluded with the last event.

SCALE time

The SCALE directive tells MT how many time units to plot per inch on the plot
(nanoseconds I inch). The default value is 100.0 which is an appropriate value for RNL.

Signal selection and trace format directives

ITP does not plot every signal in the behavior file but only those that are specifically
requested. This permits experiments which generate a large number of traces to be
analyzed selectively. MTP provides several trace formats which can be used for analog
and data domain values but the simplest and most useful for RNL is the LOGICAL for-
mat. To select signals A, B and C for plotting in LOGICAL format the necessary b1TP
directives are

Logical A
Logical B
Logical C

The order of the traces on the plot is determined by the order of the selection directives

UW/NW VLSI Release 2.1 . 46. 04/18/85



UWINW VLSI Consortium NETLIST & RNL Tutorial for Beginners

in the file. The first signal selected is plotted closest to the time axis. There can be aKmnaimum of 20 signals selected on a given plot.

All MW? directives are case insensitive except for signal names and are free field, separated by

blanks or CR.

For our example write the following into a directives file named shiftdir:

START 0.0
STOP 700.0
SCALE 100.
LOGICAL In
LOGICAL di
LOGICAL et.1
LOGICAL eut.2
LOGICAL otJ
LOGICAL ent.4

. % LOGICAL ontJ
LOGICAL outA
LOGICAL ,mt.7
LOGICAL out.,
LOGICAL out.,
LOGICAL .iit.10

(b) To create the plot file, which is to get the name shiftp$eu, enter:

samtp sbltbeh shiti~r o~p <

M will provide information on its progress and echo the content of the directives file:

bSet end pietwu Input deft
START 69A

STOP 766.
SCALE 166.
LOGICAL el
LOGICAL MLI
LOGICAL mtj
LOGICAL =uL3
LOGICAL =t.4
LOGICAL maN
LOGICAL =&A
LOGICAL =L7
LO0GICAL al
LOGICAL ati
LOGICAL =LS
Suit puqemed swemub
Geserte the plet

Rinui 1 the pdmaraft
.templ". pkst 13.l Is AffLple

IV/NW VLSI Release 2.1 .4.04/11885



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

(c) To send the plot file to the Printronix printer enter:

% Ipt -I shift plot < CR>

This will produce the printout shown on the following page. No signals are plotted before 370
ns (03700e+03), since we opened the behavior file only at that time. Remember, that at this
time the outputs of the first four cells of the shift register were High, the other six outputs
were Low. You can see this state of the register move through the output 'out.1O". You can
also see the input signal move through the register immediately afterwards.

S. Sommary and Outlook

The simulation of the inverter and the shift register are examples of what you might encounter if you
attempt to model and simulate your particular application with NETLIST and RNL. We were not
able to look at all of the commands available in RNL and NETLIST, and therefore concentrated on
some of the most frequently used ones. You will find complete lists of commands for both NETLIST
and RNL in the references listed in the appendix.

The LISP-like command interpreter used by both NETLIST and RNL provides the facilities, and
enables you to create your own special tools, for simulating very complex circuits. There are several
ways to tackle the intricacies of RNL LISP. In addition to studying the User's Guides, you may work
through examples of elaborate simulations, such as the simulation of the microcode sequencer refer-
enced in the appendix. Another possibility is to have a close look at the function definitions given in
the files wstdJ and wsilJ. Also, especially if you are fond of languages, you may want to study
LISP in its "pure" form, without commands particular to RNL and NETLIST.

Whatever you do, keep in mind that RNL is a simulator based on a model of the real circuit, and
therefore it is wise to know the assumptions underlying the model as well as the limits of its applica-
bility. Information about the theory of NETLIST and RNL is provided in Chris Terman's original
User's Guides and his thesis referenced in the appendix.

W/NW VLSI Release 2.1 - 48 - 04118/85ii~i 1



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners L

Appendix 1 - Further References

You may need information from the following sources if you want to use NETLIST or RNL more
extensively.

From UW/NW VLSI Consortium, VLSI Design Tools Reference Manual:

1. NETLIST User's Guide (Contains, among other information, a list of all NETLIST com-

mands.)

2. PRESIM User's Guide (Contains, among other information, specifications for the cofig
file.)

3. RNL User's Guide (Contains, among other information, a list of all RNL commands)

and in addition,

4. User's Guide to NET, PRESIM, and RNLINL, Christopher J. Terman, MI.T. Laboratory
for Computer Science.

S. Simulation Tools for Digital LSI Design, (Thesis), Christopher J. Terman, M.T. Labora-
tory for Computer Science.

6. Simulating a Microcode Sequencer Using RNL: An Annotated Example of RNL Usage,
Robert J. Fowler, UW/NW VLSI Consortium.

7. LISP, P.H. Winston, B.K.P. Horn, Addison-Wesley Publishing Company, 1981.

8. Metamagical Themas, The Pleasures of LISP: the chosen language of artificial intelligence,

D.R. Hofstatter, article in three parts published in Scientific American, March and April
1983..RE .LP

Appendix 2 - Description of the .alm file or the example inverter (section 3.1.2).

The invertrjim file produced in section 3.12. contains the following:

I units: 250.00 tech: ??? format: MIT

p in out Vdd 8.00 8..00 r 0 0 60
e in GND out 8.00 4.00 r 0 0 32D0

c out 3OOOOC)e-02

Lines beginning with a vertical bar are considered comments by PRESIM, unless they have an
entry "units. or "format". "units. gives the conversion factor to centi-microns. 'format:" is one
of "MITr or "UCB" (or, if no format is given, the old format originally used by the program is

UW/NW VLSI Release 2.1 .49 - 04/18/85

'. . . .. L . • •. -- - , - . " " " , , . ' ". ". ," .','." ,." .\'" "','." ,."%" "." .'_ ,-" "" ."



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

assumed). "tech: ???' is the default comment indicating the technology used. You can change this
comment with the -t option to NETLIST.

The following explanations relate to the MIT format, since the jin file of the example has MIT
format.

Lines 2 and three specify a p-channel and an e-channel transistor, respectively. Each of them is
followed by the names of the nodes to which it is connected (gate, source, drain), by the length
and width* of the gate area in units of lambda, by a geometrical descriptor for the gate area
which is always set to r (rectangular) by NETLIST, by its layout positional coordinates (NET-
LIST always specifies 0 0), and finally by the gate area in square-lambdas.

The last line of Inverterim specifies the output capacitance between out and GND, again with
positional coordinates given as 0 by NETLIST, and a value of 0.03 pF.

(For more details on the sim file formats read the on-line manual with the UNIX command man
S dmn1e).

Appendix 3 - Preparation of a imple "conWt File

The PRESIM User's Guide provides details on how to prepare configuration files. It lists all the
possible parameters together with their default values. Generally, you need different
configuration files for different technologies. Since we use a p-channel transistor, we need to
use the configuration file to tell PRESIM the appropriate values for this device. The coagig used
in the examples of this tutorial contains the following specifications:

resistance enh static 10 10 100000
resistance enh dynamic-high 10 10 10000
resistance enh dynamic-low 10 10 10000
resistance p-chan static 10 10 200000
resistance p-chan dynamic-high 10 10 20000
resistance p-chan dynamic-low 10 10 20000

Appendix 4 - The 'sllae file of the example "shift' (section 3.2.3).

The alias file shiftal, created by NETLIST in section 323. has only one line:

= in out.0

This tells PRESIM that 'in" and "out.10' have been connected and therefore are considered as
representing the the same node.

-. Note that the sequence of length sod width is reversed in comparison to transistor specification with
(ptrss ... ), (etrens ... ), etc.

UW/NW VLSI Release 2.1 -50- 04/18/85



UWINW VLSI Consortium NETLIST & RNL Tutorial for Beginners

Appendix 5S Summary of Typical Csmmads Asdated with Simulation Teds
neiis baseenesj basenaav ain

purpose: create a flattened netlist representation from an hierarchical representation.
* files:

basenameanet (created by the user)
basenamesam (is output of netliut.)

presim besen~iaiAn bae~ cojq fig
purpose: create a binary circuit representation frmthe flat circuit representation.
files:

basename (is created using NETLIST, input to PRESIMA)
basename (is output of FRESIM)
config (is technology file provided to the class)

rtN bausenemcJ

purpose: run the simulation
files:

basenamel (created by the user, generally with GEN -CONTROL,
calls out the other files for inpr~t and output:

uwutdl (standard library routines)
uwaiml (more standarr library routines))

basenamelog (will contain all the stuff displayed on the terminal
after exiting RNL using 'exit' or '(exit)l

basename (binary network repriesentation created using PRESIM)
basenameevl (contain ali plotting information created as a result

of the chfiag command.)

gen control
purpose: set up a control file for a circuit for the first time.
files: none needed for input, however GEN CONTROL will prompt for a basename and an out-

put file basename~l will be created.

geinw basenanwsilm basameiline

purpose: convert a simple timing file in a RNL compatible format.
files:

basenamestim, (input fie for GEN-TIME; specifies input waveforms
in terms of nodename, period and intra-period signal

* changes.)
basename.time (output file which is 'loaded' into the

-:antro~bssename file.)

UW/NW VLSI Release 2.1 -51- 04/18/85



UW/NW VLSI Consortium NETLIST & RNL Tutorial for Beginners

pla2net basenamw

purpose: generate a NETLIST macro for the pla from the truth table.

files:

basename.tt (input file for PLA2NET, containing the truth table.)
basenamenet (output file created by PLA2NET containing a macro

with the name 'basename': (macro basename out in))

Appendix 6 - Makefle Commands.

Step 1:
change the variable N to equal the basename of the circuit to be simulated in the 'makefile' file,
unless you want to include in the command line every time 7N=basename'.

Step 2:
run the appropriate command:

make runs all programs using the basenamenet, basenamestim and config files as the original
source files only when necessary. Where files do not exist, the programs to create them
wili be run.

make c remove alI derived files: aim, binary file,
.time, Jog, .a, and .beh files

make n creates the jim file running NETLIST
make p creates the binary network file running PRESIM
make r runs RNL
make I create a control I file for RNL running GEN-CONTROL
make t create a timing .time file by running GEN-TIME
make filename create the filename requested by running the

appropriate programs.

.2

UWN LIRl.,e2.1 - 52.- 04/18/85

.....................................



UWINW VLSI Consortium NETLIST & RNL Tutorial for Beginners

Appeadh 7.- A Simpl Makefle

0 makefile for RNL
0 the value of name should be replaced by the basename of the circuit
0 to be simulated on the next line: eg. N shift for simulation
0 of the shift register.
N -shift

* # dependency information
S(N).log: S(N)1 5(N).time 5(N)

rnl 5(N)l

$(N): S(N).sim config
presim, 5(N).sim 5(N) config

5(N)I:
/usr/new/gen-control

S(N).time: $(N).stim
/usr/new/gen time 5(N).stim S(N).time

f S(N).uim: S(N).net
netlist S(N).net $(N).uim

# datacalculat ion:
n: $(N)sim
p: $(N)
r: $(N).log
1: S(N)4
t: 5(N).time

rmm-f come 5(N).sim $(N) S(N).time S(N)1og S(Nal)

UW/NW VLSI Release 2.1 .53 - 04/18/85



v- t- Y- V~.- I' T. R W T T-7I-Vv rrt.-

NETLIST/PRESIM/RNL A TUTORIAL

Robert Dacls
Robert Fowler

UW/NW VLSI Consortium
Sieg Hall, FR-35,

University of Washington,
Seattle, WA 9819S

TR 084-07-01

L ITODUCrION
The following document is intended for beginning to intermediate users of the following

programs;

" NETLIST,

" PRESIM,

RNL.
Some familarity with programming and the use of a computer terminal is assumed.

The approach used here is to provide examples that have been developed while using the
programs here at the UW/NW VLSI Consortium. They are by no means exhaustive. Much of
our attraction to these programs is their flexibility. This is particularly true in the RNL inter-
preter. When using this tutorial copies of the User's Guides (provided separately) should be
available.

1.1. Ground Rules

The reader is encouraged to be sitting in front of a terminal that has these programs
available. Much more can be learned by making the unavoidable mistakes when editing files
and running these programs than by just reading. Error messages are at times cryptic and we
make no effort here to wade through them. Readers are also encouraged to experiment and
implement their own ideas. One very instructive method is to take these examples and modify
and/or add extra capability. Learn by doing.

In sections where readers are expected to be editing; the text to be entered is in bold
two. In the sections on the interactive use of RNL; user input will also in bold face. Program
responses are in normal text. We recommend that an editor that supports Lisp (e.g. EMACS)
be used if at all possible.

We make such a statement as. both the NETLIST program and the RNL command inter-
preters are based on a Lisp syntax. That is to say program statements (commands) are sur-
rounded with parentheses (. A general template for a command is

(command name arguments).

It should be assumed that all commands require the parentheses. It will be stated explicitly if
they are not required.

-1- q



UW/NW VLSI Consortium NETLIST/FRESIM/RNL - A Tutorial

1.2. Document Structure
We begin by discussing some of the basic statements used in writing NETLIST programs.

This will be followed by the generation of the so-called .sim file of transistors. This file is the
basic input for many simulators. Examples of using the program PRESIM, a sim file prepro-
cessor that generates input for the digital simulator RNL, are then presented. Simple interac-
tive RNL experiments are shown and techniques for running RNL in batch mode are
described. We end with some of the basic concepts of Lisp and a tour through some of the
Lisp code that has been written locally to facilatate the use of RNL.

2. BUILDING A NETWORK DESCRIPTION USING NETLIST

For effective design it is important to establish that the design will work before layout is
attempted. The program NETLIST allows the user to describe the circuit with a symbolic
language. The NETLIST description is really a program which when run produces the list of
transistors that make up the circuit. The following is a simple NETLIST program for a CMOS
inverter. These commands will then be supplemented with others that will allow larger cir-
cuits to be partitioned.

vdd vdd

in out
out

gnd gnd

CMOS inverter NMOS inverter

2.1. Simple Commud

; Ali text following a semicolon Is a comment and is Ignored ; (1)
; A CMOS lnverter p type device 2 wdth of n device ;(2)
(node In out) ; (3)
(ptre In out vdd 18) ; (4)
(etrsu ia Sod out 4 8) ;(S)
(capacltance out 0A3) ;(6)

1 As indicated by this line all text that appears after a senmiolon Q is considered a
comment and is ignored by NETLIST.

3 This line declares the nodes in and out. You have to declare each node that you use.
Nodes declared with the node command will be referred to as global nodes. Two glo.
bal nodes that NETLIST knows about without your explicitly declaring them are
vdd and Sad. Some programs are case sensitive and it is recommended you use them

-2-



UW/NW VLSI Consortium NETLIST/PRESIMiRNL - A rutortal

as they are shown here. This redundant piece of information (after all, NETLIST
can see that you are using a symbol as a node name when it builds the circuit)
prevents spelling errors from causing unnecessary grief. Declarations are not as
much trouble as they sound. Later a scheme will be presented that structures the
NETLIST definition so that most nodes will be local to some module. Local nodes
will be examined shortly. Using this technique only the few global nodes (usually
clocks and i/o signals) have to be declared.

4 to 5 For simple circuits these are the two commands that do a lions share of the circuit
description. They identify an individual transistor. They come in several types such
as etrara -> n type enhancement[], ptrans -> p type enhancement and dtrans -> NMOS
depletion transistor. There are others and the interested reader is encouraged to
examine the NETLIST User's Guide to find out more. In most CMOS designs
etrans and ptrans should suffice. The template for any of the transistor types is

(type gate source drain width length).

The type is as described above. The gate, source and drain arguments are the termi-
nals of the transistor being declared. In line 4 the p type transistor is gated by node
in, its source is the node out and its drain is vdd (Note the case of vdd and P in
lines 4 and 5). Source and drain in NETLIST is used solely to distinguish between
the terminals of the transistor and do not imply anything about actual operating
potentials. Width and length specify the size of the transistor. The values are given
in a length parameter lambda. This allows for some technology independence in the
network description. This unit is also used in layout programs. Typical values for
lambda are 2-3 microns. In the inverter description above then, the n type transistor
(line 5) is 1/2 the width of the p type.

6 Finally some capacitance is modeled on the node out with the use of the capacitance
command. The user is relieved of specifying the second terminal on the capacitor
because all are assumed to ground. The values (0.03) are in units of picofarads.

This file is then used as input to the program NETLIST. The actual running of this
example is deferred momentarily as some additional NETLIST commands are investigated.

2.2. Addtimal Built-in Famduefus

Up to now we have used the transistor commands (etrans and ptrans) and the eapad-
tames command. If this was all that was available life would indeed be tough. The general
requirements for additional commands are function type, a technology and device sizes.
Specification of the technology is important because NMOS uses depletion pullups whereas
CMOS uses p type enhancements. This requires a slightly different handling of the signals.
In NETLIST such commands exist and we will go through some now.

A CMOS inverter has the following template

(cfavert out (in width length))

Clnvert is the command name (like etrans above) and is followed by the argument declaring
the output signal (out). The next element of the command may look a bit strange but in con-
veys a lot of information. It is in fact a data structure we will be seeing often, the details of
which are deferred to section 5 of this tutorial. For this example, it is declaring the input sig-
nal to be in and it defines the size (width and length) of the n type transistor in the CMOS
inverter. This nearly satisfies our requirements but note that in the clnvert command (in
width length) only specified the size of the n type transistor. Where is the p device size
declared?

I] WMooriculy NETLIST ws written to describe NMOS citcnuts where there is just the one type of
enbancement traflistot.

-3-

. - " .. ..... . . .... --. . -. .- I ,-r*.. ' " .... ,,a
'a s a

i_



UW/NW VLSI Consortium NETLIST/PRESIM/RNL -A Tutorial

This is a historical artifact of the NETLIST program. In NMOS the pullup is a depletion
mode transistor which has its gate tied to the source. In the case of an NMOS inverter then
the gate of the depletion device is in fact the output. (This is also true of nand and nor
gates.) For the special case of NMOS design, we have a command that looks like

(invert (out width length) (in width length)).

As you can see the depletion pullup's size is declared on the output node. Similarly NMOS
nand and nor gates have the same form[2J. In this context then the structure

(node-name width length)

specifies the size of the transistor gated the node node name.

In CMOS the input gates both the p and n transistors. Moreover, nand and nor gates
have equal numbers of pullup (p type) and pulldown (n type) transistors, the sizes of which
could vary independently. Clearly some other solution must present itself.

The command ratio is the current solution to this dilemma. Its template is

(ratio value)

Ratio is the command name and value is a constant that is used to set the width of the p dev-
ice. The p device's width is the product of value times the width of the n device (Sp sub width
= value -1 n sub widthS). The default for value is 2.). The lengths of the two transistors

are assumed equal. This doesn't not allow for complete independence of device size but has
worked well in practice.

Returning to our need for a CMOS inverter command, we are left with the following

(node In out) ;(1)
(ratio 2.0) ; (2)
(cinvert out (in 4 8)) ;(3)

Of course we still need the node command as before. The last two commands are equivalent
to the transistor commands discussed earlier.

(ptrans in out vdd 8 8)
(etrans in gnd out 4 8)

Its hard to see the gain with this example but if we consider the two possiblities for
CMOS nand and nor gates the advantages start to present themselves. Within this scheme one
could guess the commands for a 3 input nand to be,

(node out nl i mI) ;()
(ratio 2.0) ; (2)
(cnand out mla i in); (3)

Again input and output nodes have to be declor.-d with mode. By dropping the width and
length arguments for the inputs we have .,umed default sizes for the enhancement transistors
(2 lambda x 2 lambda). The ratio command sets the p devices to be two times the width of
their corresponding n type just as before. The equivalent transistor description in this case is

12i For example a complte apcifai-doo of 2 input and sod nor p m.
(nand (out width leoph (;a) widthl lengthl) (in2 width2 leosth2))
(nor (out width leanp ) (ios width] lengthl) (in2 wdth2 leolth2))

°4-



UW/NW VLSI Consortium NETLIST/PRESIMiRNL - A Tutorial

getting quite large

(node ou 1l 1203 12) ; (1)
(etrms 1211 out) ; (2)
(etrans h W2 2 1) (3)
(etrano ln3 pad 2) (4)
(ptrous l out vdd 4 2) ;(5)
(ptrua. 12 out vdd 4 2) ;(6)
(ptruns In3 out vdd 4 2) ;(7)

I to 3 If we explicitly describe the 3 input nand we have to declare 2 additional nodes.
Nodes I and 2 are not particularly interesting as their only function is describing the
connectivity to ground (gnd) from the output node owt (lines 2 and 3). Note when
we used the built-in function they needn't be declared. NETLIST recognized the
need for these 'local" nodes and generated their names automatically. NETLIST
always uses numeric node names for local nodes and the user is strongly advised to
avoid their use in node delcaration commands. In the next section will we see how
these automatic nodes can be exploited even further.

5 to 7 The dual of the pulldown chain doesn't require any additional nodes but the 2 to I
ratio in transistor width must be explicitly declared.

The same situation is encountered with CMOS nor ates[3]. Additional built-in func-
tions of this nature are provided in NETLIST. The NETLIST User's Guide contains a brief
description of each and in many cases contrasts the built-in function to its transistor
equivalent.

2.3. User Defned Functions (Macros)

As shown in the previous section one of the main advantages of the built-in functions
was the recognitica and generation of the local nodes. The task of providing built-in func-
tions for all the possible cases where they appear would be impossible but NETLIST provides
an alternative. If user defined functions can be used as if they were built-in then specialized
modules can be created as their need arises. An example of this would be if the device sizing
of the gate functions was inappropriate for a design, a new function could be designed that fit
the requirements.

User defined functions are built in the form of macros. One way to think about a macro
is a replacement for a related set of commands. Macros can have calling arguments (much
like FORTRAN subroutines) and their own 'local' nodes. Several examples of user declared
macros will be presented in this section.

From a design point of view the macro of a SR latch shown below is not recommended.
The choice was made to include an example where the circuitry needs little explination so that
the important features of the macro are evident. As has been the pattern important features
are descibed on a line by line basis.

; CMOS Slatcl mere ; (1)
Inverters are ratloed @ 2.0 ; (2)
Nand gates are ratlod 0 1.0 ; (3)
(mcro SRlahth (a m R esQ m_Q-) ; (4)

(local hi 1Z) ;(S)

131 A 3 inpat CMOS nor pte with default sze n tradoistors is
(coot out in] in2 n)



UWN VLSI Consortium NETLIST/PRESI?,RNL - A Tutorial

S II

(ratio 2.0) Sltc (6)

(ciuvert hi ml-) ;(3)

(rude 1.0) ;(9)
(cmin "Q hi mQ.) ;(10)
(cami mQ- hi Q ;(
(capacitance hi 0.03) ;(12)

* (capacitance h2 0.05) ;(13)
) ; (14)

*I to 3 Comments just as before a begun with ";and are ignored by NETLIST. They are
useful especially as time goes by and you wonder what something really does.

4 This is the begining of the sescre command. Its template is

(acro urn (paranisters)

A macro is called with
(name (caliuLargmemta))

Macros all begin with the left parenthesis and the word macro "(macro' followed by
the macro's name (Moack). Following the name is the list of formal parametners.
The number and type of cal1inargwers must match the formal parameters. As
mentioned earlier this similar to the parameters in a FORTRAN subroutine. For
example if a parameter is used as a node name in the macro's definition then when
the macro is called the corresponding calling argument must be a declared node
name. The only way encountered so far to declare a node name is with the use of
node. Line 5 introduces another way to declare a legal node name.

5 Following the declaration of the macros name and parameter list, any local nodes
that are needed are specified by the local command. Its form is exactly like the node

-6-

................................ . ... ..



UW/NW VLSI Consortium NETLIST/PRESIM/RNL -A Tutorial

command. This is useful because it helps in remembering what local does. It gives
us a means of declaring the local names to a function and thus eliminates the need
to specify them along with the important global signals (clocks, i/o, control) within
the circuit. Every time the macro is called new nodes names are generated for these
local nodes. Again we stress the fact that NETLIST uses numeric node names for
these and one should avoid the use numeric node names in any other context.

6 to 13 This is the body of the macro. Any of the built-in functions can be used a a state-
ment in the body. In addition any previously defined user macro can be statements
in the body of the macro (shown in next example). Lines 7 and 8 also reflect that
within !he macro local nodes can be used just like the global nodes we have seen
earlier. Lines 6 and 9 show the use of the rati, command. The scale values are set
to 20 and 1.0 respective!y. Upon exit from the macro the scaling value remains
equal to 1.0. This can cause confusion and it is recommended that the rado com-
mand be used frequently to ensure you are using the scale value you intended.

14 This right parenthe-is 9) completes the macro. Careful inspection will show that this
matches the left parenthesis used in line 4, the begining of the macro declaration.

As a practical matter how and where does the use of the macro enter into the NETLIST
program? For one thing the names in the parameter list must not conflict with the names of
the global nodes. The following NETLIST program demonstrates the nesting of macros and
hopefully provides a clear introduction to their use. We will also take this opportunity to
introduce a command that allows repetition of a group of commands.

v
dd

S.

MM M -

5 65

---

C IC

d

6 Transistor Memory

; macro for a 6 transstor memory cell, transistor sizing from ; (1)
; Aayis and Daulp of Digital Intearatid Chrcutts," (2)
; David A. Hods and Horace G. Jackson. ; (3)
(macre mmcii (mod .. d- mad rad) ; (4)

(local hI112) ;(5)
"(rao O,12) ;(6)

(cluvort hi (h2 16 2)) ;(7)

.7-

N. - N.. -.4. .. . . . * ... *"**" "*-* S.....'



UWINW VLSI Consortium NETLIST/PRESIM/RNL - A Tutortal

(clate h2 (hi 16 2)) ;(8)
(etras med *_ d hi 4 2) ; (9)
(.tram med. re d- h2 4 2) ; (10)=) ; (11)

eed merea ;(12)
(13)

; maer for peratlea of Mamword x mabit memory ; (14)
requtre acr mem ; (15)

; bit gad word Index begls at ;(16)
(macn meahM (msaxwed mabi a-ad meed- md mod-) ; (17)

(repest r maxword ; (18)
(repeat c I mzblt ; (19)

(maeceli m a. m ed-. mdc m d-€c) ; (20)
(capacitane m_d. OS) ; (21)
(capaoltace m d-.c .) ; (22)

; (23)
; (24)
;(25)

; end mem-p ; (26)
; (27)

Begin mai, body of memory generation ; (28)
(mode el ded- d-) ; (29)
(memejn 2 2 edod- dd-) ; (30)
;end main ; (31)

1 to 11 The first macro declared is for a 6 transistor memory cell. The flip-flop is con-
structed from two cross-coupled inverters (lines 7 and 8). Note the use of local vari-
ables within the flip-flop. The enable lines control the reading and writing of bits or
words into the flip-flop. In declaring the parameters to a macro one must use some
care. Note in line 4 the prefix m_. This is used as a mnemonic for formal macro
parameters and limits the possiblity of use the same name as global node name.
Another point that should be made in this example is the use of a faction in the
ratio command on line 6. This is perfectly reasonable when the drive must be very
weak as is the case in such a memory cell. As noted in the comments a discussion of
the transistor sizing can be found in "Analysis and Design..." The simulation of the
6 transistor memory cell is beyond the scope of this tutorial but is covered in section
4 of the RNL User's Guide. Finally, note the general formatting of the macro. The
closing right parenthesis (line 11) is aligned with its corresponding left parenthesis.
When writing macros some scheme like this should be employed. Some editors
(EMACS) provide commands that will identify corresponding pairs of parentheses.
As macro size increases use of an editor with this capability is strongly recom-
mended.

14 to 25 This macro follows the same general scheme that has been outlined before. Impor-
tant things to note here is the use of a new command and the nesting of one macro
in another. When nesting one macro it is important to remember that a macro must
be declared before it is executed. Line 18 provides a very useful capability when
describing circuits. Repeat is much like the FORTRAN DO loop. It has the tem-
plate

(repeat index initial final
statements within repeat block

)

.8-

-. a



-. v: 1- -i. m
o 
.- - - -. . . .;. . .-- - . r . j -r - r., - , " J , L -

UW/NW VLSI Consortium NETLIST/PRESIM/RNL - A Tutorial

An index (line 13 r and line 19 c) is declared and followed by its initial and final
values (eg. 0 and avid o line 1). As stated in the introduction, this command
is contained within a set of pentheses (note: formatting can be very important dur-
ing the debugglaig proosm). From the example it is obvious that repeat loops can be
nested. Note bow we s"d the repeat loop indicies in constructing new node names
(line 30). This is a very powrful feature in NETLIST programs. This ability gives
us a third kind of ida ms global sand local detailed earlier and structured. A
structured name bi two or more components separated by periods. The first com-
ponent must be a declaned node name. As we have seen node names can be
declared with a led or a me& command. Another way is as it used here where the
declared name comes from one of the parameters to the macro (Recall that node
names used in calling a macro must be declared names.); the remaining components
can be other names or expression. Here we have used the indicies from the repeat
commands. You only have to declare non-numeric components of structured names
- for example, only "ed" mum be declared, not 'ed.", "ed", etc. ( se line 29). Full
details can be found in the NETLIST User's Guide.

to 30 Finally we see that the main body of NETLIST program has been reduced to 2
statements. Declaring the global node names and calling memory generator macro
menm_jtmi. Again note how a user ddned macro is used just like the built-in func-
tions described earlier.

2.3.1. Loading Matre

Up to now we have included all of the the macros that were required for the circuit
descriptions in one file. However to use the mems.cell and merja macros shown above it
would be useful to be able to incorporate them into another design file without typing them in
in their entirety. This can be done with the use of the lead command. Its template is

tB (lend "ftlenme')

The actual filename is up to you but it must be surrounded by double quotes ". The practical
effect is that any legal NETLIST commands and any the macros contained in the file are made
available to the remainder of the program just as if they were typed in. An important
requirement a macro must be loaded before it is executed. This is really the same require-
ment mentioned earlier, that a macro must be declared before it is used.

By putting the macros memeli and menja in a separate file and with the load com-
mand, we could rewrite the program for generating the 2 x 2 memory.

(lood memprmitives) ;(1)
(node edd ed- d-) ; (2)
(mem e 2 2 ed d- d d-) (3)

Where the file mem_prmifves contains the NETLIST code for mess cell and mem an.

24. Summary

This concludes the section on building circuit descriptions using NETLIST. We have
discussed the following points

- Transistor descriptions (eg. etrans, ptrans),

; Node name types (e.g. global, local and structured),

" Built-in functions (eg. cinvert, cnand, cnor),
* " User defined functions (ie. macros),

" Repeating blocks of NETLIST statements (ie. repeat),

-9-
%* . . . . . . . . . . . .

. . . . . .. . . . . . . . . . . . . . . . . . . ."9. .

'e -.- oo -o .. .- % o - o . . o , . . , ". " % " " " o ,,% .. ' " . .' % * . .. "-,- . , . . . . .o,"- ". , .o o - .
- . . . . ..-..- '4- - - - -' '- -"- "- 

'
- ' ' '" . -"""" " " ' " " """ " •.., .- .' .-. ..'"•"



UW/NW VLSI Consortium NETLIST/PRESDIIRNL -A Tutorial

Loading previously defined macros (ie. load).
In following sections details of generating transistor fies for simulation will be investi-

gated. A flexible command language for simulation and an elaborate example of simulating a

large design will be described.
There are many more functions that can be used in writing NETLIST programs. More-I

over, arithmetic functions and common Lisp functions are available. These features are
beyond the scope of this tutorial but users are encouraged to refer often to the reference
manuals.

3. GENERATION OF FRESLM AND RNL INPVT FILES
The below is a session of running the medtist and pro"s commands in the C shell of

* UNJX[41. Following the session. comments are indexed by line number.

% metd aol~a 1
*I units: 250 tech: M? format: NIT ,(2)

p in out vdd 8B08D.000 r 64.0 ,(3)

e in gnd out 8.0 4.00 0 0r32.0 ,(4)

c out 3.OOOOO0e-O1 '(5)
% medial Invertsraet -liacses (6)
1 units: 250 tech: isocmos format: MIT '(7)
p in out vdd 8.0 8.00 0r64.0 ,(8)

e in gud out 8.0 4.0 0 0 r 32.0 ,(9)

c out 3.OOOOO0e-O1 ,(10)

% meil luvertermet -duecuee -406 (11)
I units: 200 tech: isocmos format: MIT '(12)
p in out vdd 8.0 8.0 0 0 r 64.0 ,(13)
e ein gnd out 8J)4.00 0 0r32.0 ,(14)

* c out 3=OOOOOe-01 ,(15)
% medial lavertermet Imverte~ds -dmes (16)

* % pros lave torjiss Inverter ,(17)

* Version 4.2 ,(18)

8 nodes; transistors: enh-1 intrinsic=-O p-chan-1 dep=0 low-power-0 pullup=0O resistor-0 ; (19)
Total transistors eliminated - 2 ; (20)
% prodis Inverter~sl laverte cemfig ; (21)
8 nodes; transistors: enh-1 intrinsic-O p-chan=1 dep=0 low-power=O pullup-O resistor=0 ; (22)
Total transistors eliminated = 2 ; (23)

% ; (24)

1 This command runs the program NETLIST. This is the simplest form of the com-
mand. That is, only an input file inverter Aet is specified. The contents of
inverternet is the CMOS inverter described in the previous section. Output from
meil will be referred to as .sim file. With this usage of the command the aim file
(lines 2 to 5) is sent to standard output which in this case is the terminal.

2 A line that begins with a vertical bar (1) is generally a comment in the Sim file and is
ignored. The only exception to this is when a .sim comment begins with a line of the
form in 2. This line is required by programs in the Berkeley and UW tool sets. It
contains a conversion number (units:-) and a specification of the technology type
(tech-) and finally the format: of the sim, file itself. Two formats are used within the
UW/NW tools, the MIT format here and the UCD format produced by the layout

U extractor fmaxra.

14IUNIX is aradawk of Ba Lbofatoriusanadhe C saeis acornad belgenurally end witthe
4.IBSD UNIX.

- 10-



UW/NW VLSI Consortium NETLISTIPRESIMiRNL - A Tutorial

3 to 5 Lines 3 and 5 represent the transistors in the inverter circuit. The MIT template for
,hee Itransisst' recorde is the following;

type gate source drain length width xpos ypas shape area.

Type identifies transistor records as n type enhancement (e)[5], p type enhancement
(p) or when designing in NMOS depiction (d). Gate, source and drain are of course
the terminals of the transistor. Xpes and ypos would provide the location of the
transistor if the .im fe was extracted from a layout. In this case when only the
connectivity is being declared these values are set to 0. Length and width represents
the size of the transistor. When a Am file is obtained from a layout and if a transis.
tor is oddly shaped, they are approximate values. If an actual transistor is something
other than rectangular, it is indicated with the shape field. A rectangular shape (')
is aumed when the aim file is generated by NETLIST. Area is the total gate
area. Line 29 reflects toed capacitance declared in the NETLIST input file (in
picofarads).

6 In this command the additional input parameter -t has been declared. Note there is
no space between the option flag and the technology name. As can be seen the out-
put (lines 7 to 10) is substainaly the same except with the technology now being
declared a isocmos.

11 This time we have added another option which sets the centimicron value of lambda
to 200 (ie. lambda - 2.0 centimicrons). Again there is no space between the option
flag (-a) and the value. This option is not refected in the transistor sizes as both
length and width are the same as the lines 7 through 10. Rather the units: parime-
ter is now 200 rather than 250.

16 This is the usual form of the netlli command. Here we have specified an input file
inverterert, an output file inverter Jim and a technology lsocinG. When an output
file is desired it must appear as the second argument in the command.

17 The command presm prepares a binary file for input to RNL. Presim replaces the
transistors in the aim file with an equivalent sized resistors. The equivalent tesistors
are used with any capacitance on a node to compute an estimate of its transition
delay time. The command must contain an input file (invertera.im) and an output
file (inverter). The defaults for this replacement are the source of no end of confu-
sion for new users. The rule of thumb for the ratio of the conductivity of n type
enhancements to p type enhancements is 2D to 2.5. Unfortunately, presim default
assumes that all transistors have identical conductivity. To its credit presim does
allow the user to parameterize the resistance and capacitance values by the use of
the so-called config file (see PRESIM User's Guide and section 3 of the RNL Users
Guide). The use of this file is shown on line 21 of this example.

19 to 20 Presim provides some additional output to the terminal. Line 19 contains informs-
tion about the number of unique nodes encountered and a count, by type, of the
transistors in the circuit. The node count of 8 is of no concern. The expected node
count of 4 (in, ou, vdd and Sad) has 4 nodes added to it that presim uses internally.
Presim includes a network reduction scheme that improves execution speed during
simulation. In effect it attempts to find a sum-of-products representation for as
many of the nodes as possible. This has the practical effect of reducing the number
of nodes (e.g. local nodes internal to the gate primitives) and transistors, line 20
reports the number of transistors involved in sum-of-products representations.

21 to 24 As mentioned earlier the configuration file is required when the resistor replacement

operation needs parameterization. As can be seen the practical effect when issuing
the preat command is to add an additional option (cenfig). This option is the

151 The notation for the transistor typ relects the history of this imulator. It wa origiamly designed
with NMOS circuits in mind where there is but one type of enhancement transiator.

- 11- '



UW/NW VLSI Consortium NETLIST/PRES[IRNL - A Tutorial

name of the configuration file you wish PRESIM to use. A extremely simple
configuration file that sets the conductivity ratio of n to p type transistors to 211 is
shown below;

resistane st atic 161 100lo
redlutace sak dynamic-low 10 10100
r tadance oak dynamIc-high 10 10 1066

redistance p-chma static 10 10 30
redstance p.chaa dynami-low 16 10 2066
redstacse p-cham dynamic-ik 1610 2606

The template is

resistance t-type r-type I w value

Resistance is a keyword for presim. T-type identifies the transistor type and r-type
the resistance type. The three values shown are discussed in section 2 of the RNL
User's Guide. L and w are the length and width of the transistor that has a resis-
tance given by the last parameter (value).

3.1. Review

We have run two very important programs for the simulation of digital circuits using
RNL. Netl is a program that generates the transistor representation for the circuit. Fre-
quently used options were outlined. Many more exist and interested readers are encouraged
to read the NETLIST User's Guide.

Presim is a preprocessor for the digital circuit simulator RNL. It performs a transistor
resistor replacement that is used by RNL to give estimates of the signal delay times. Its major
pitfall is the default value for the resistance of p type transistors. A simple "workaround! was
presented by the use of the configuration file. Again much more can be done with the
configuration file and this information can be found in the PRESIM and RNL User's Guides.

4. INTERACTIVE SESSION WITH RNL

The following is an interactive session with RNL. It includes loading additional Lisp
interface functions, formatting the results of a simulation step and running the inverter test
case.

% r; (0)
(load "uwstd.) , (1)
done , (2)

(3)
(load "welm') , (4)
Loading uwsim ,(5)
Done loading uwsiml , (6)
done (7)

(8)
(read-network *Inverter-) (9)

8 nodes, transistors: enh-0 intrinsic=0 p-chan=0 dep-0 low-power=O pullup-0 resistor-0 ; (10)
done ; (11)

;(12)
(det-repot '(wCurrent state.. newline In out)) ; (13)
(*Current state."! ;(14)

in out) ;(15)

; (16)

.-12-

.p..



UW/NW VLSI Consortium NETLISTIPRES[M/RNL - A rutoriat

"- *.\.~..(Chfftg'(1. out))
(in out),()

,(19) L
Ila 9(20)
done 9(21)
8 ,(22)

(23)
Step begins 0 us. ,(24)
in-0O 0 ;(25)
outl* Oh 0A;(26)
Current state: ; (27)
Current time- 100 ;,(28)

ininoou; 9(29)

done ,(31)

hi In;(32)
done ; (33)

*~ ,(34)
; (35)

Step begins @ 100ns. ; (36)
in-1O 0 ;(37)
out=O 0 0.6 ;'(38)

* Current state: ,(39)
Current time- 200 ,(40)

(41)

done ,(43)

9_1 (exit) ,(44)
% ,(45)

0 From the C shell (note the "% *prompt) issue the command mi.
1 to 7 From within the RNL command interpreter issue the commands (load uowsd.V) and

(load uawstd.1). The two files uwstdl and uwsiml provide users of R.NL with a sim-r
pie command interface. In general these files will be loaded every time RNL is
used. The interpreter when finished with a lead command returns 'done (lines 2
and 7) Many of the commands return this.

9 The read-network command is issued next. This reads the file prepared by presla
and in effect builds the network that is to be simulated. Recall when presim was
run it provided a summary of the network. Similarly read-network returns a sum-
mary (line 10) however, the node and transistor count now reflects only those
remaining after presim. For this example there were no internal nodes and the node
count is unchanged. Again in line 11 *done is returned by the command inter-
preter.

13 Dot-report is a function provided in the uwsim~l package that allows users to format
a report that is printed at the end of each simulation step. In setting a format up it
is important that it begin with '( and end with ). In this case we have a simple for-
mat that prints out the string "Current State-!. A string of some kind is required
the shortest one being the null string". Following the string is a newline (newhines
are interpreted as the sequence carniage return, linefeed). Then we request that the
states of the nodes with the names in and owt be printed. Def-report does not return

~~ done like before but some rather odd text (line 15) that for the purposes of the
tutorial can be ignored.

.13 -



UW/NW VLSI Consortium NETLIST/PRESIM/RNL - A Tutorial

17 Chfla is another function provided in the uwsim.l package that informs the simula- I
tor which nodes should have their transition times reported. This is done by declar-
ing a quoted list of symbols that have the same print names as the node you are
interested in (e.g. in and ows). Quoted lists in Lisp begin with '( and end with).
Alert readers will note that the def-report in line 13 is also a quoted list. The list is
returned (printed) by chfiag when it is finished.

The arguments to the RNL command interpreter formally are known as Lisp symbols.
In most cases, these symbols will have the same print names as nodes in the circuit (i.e. you
type the same string). We have already seen examples of this in the setup phase detailed
above. In the following we will refer to the arguments of many of the commands as nodes.
This is only to avoid clutter, they are in fact Lisp symbols. A discussion of the evaluation of
Lisp symbols etc. is deferred to section 5 of this tutorial. In areas of potential confusion we
will refer to them as Lisp symbols. In this same vein all the commands described for the rest
of this example are provided in the uwamJ package. This should be assumed unless it is
noted otherwise.

We are now in a position to do some simulation of the inverter. The commands that are
presented here are simple. With some experience with the Lisp interpretor much more ela-
borate commands can be written. That is not the subject here however and is deferred.

20 I (h and a described later) is a command that sets all of the nodes listed (e.g. in) to a
logic low. Note this and related commands do not require surrounding () when run
interactivly. This value will not change under any simulation conditions. Using this
and related logic commands has the effect of declaring these nodes as inputs to the
circuit.

20 to 25 s is the simplest simulation command available. It runs a single simulation step for a
predetermined amount of time (default iOOns) or until the entire network being
simulated has settled to a definite state. Recall in our set up phase we informed
RNL (chflg) that the transition times of the nodes in and out should be reported.
Lines 25 and 26 show these transition times relative to the current time reported in
24. Transitions of nodes that are set by I etc. are assumed to happen immediately
hence the transition time of 0 in line 25 for node in.

27 to 31 When the simulation step is completed, a uses the def-report (line 13) to format the
results of the step. Line 27 is of course the string we wanted to have printed, the
current time (ns) is then given (this is always reported and need not be included in
the format specification). Line 30 details the current states of all the nodes that
were declared in the def-report. In this case in and out are indeed shown to be an
inverted pair. "done (line 31) is echoed to the terminal and this completes one
simulation step. If a def-report was not specified a warning to that effect is
displayed and then "done.!

32 to 43 This sequence is very similar to the one just described. h is the analogous function
for setting nodes to a logic high value. Not used in this example is the function u.
It completes the set by declaring nodes to 'unknown! The characteristics of nodes
declared unknown are discussed in Section 4 of the RNL User's Guide. The results
again show that the nodes of interest are indeed a inverted pair.

44 One exits the simluation by either typing on a newline the one of the strings (exit)
or sat or by entering CNTL D. Exit is used here to return to the C shell of UNIX.

To release a node that has been declared an input with any of these commands one uses
the x command followed by a list of nodes. Nodes that have been released will reflect their
"true" state at the end of the next simulation step. The choice of x is a potential source of
confusion as X (capital X) is used to represent the logic state of unknown. This is unfortunate
but..

-14-

*. . ..-



UW/NW VLSI Consortium NETLIST/PRESIM/RNL - A Tutorial

4.1. RNL Control File

For small simulations such as the one described in the previous section all of input can
be entered while in interactive mode. As simulations become larger or as one iterates on a
design the need for a set of frequently used commands to be entered without retyping grows
rather quickly.

RNL provides such a capability by the use of the control file. The commands in this file
are executed upon entry into simulation. When the end-of-file is reached control is returned
to the user. That is to say commands like the ones we have been through can be entered.
What are typical commands put in the control file?

In the cases we have just analyzed the following file would reduce our efforts consider-
ably.

A text appearleg after a uovlco. Is a commast and Is Ignored
Ral control fle for the Inverter example

(load ,awstdl')
(load uwdmj')
(readl-notwork°lvmo'

(chil '(n ot))
(det-reprt '(0Curreat State:' mwlne In ot))

This file is a collection of the setup commands that we issued first when running RNL interac-
tivly. For detailed analysis of these commands the reader is referred to the previous section.
Note the use of the comment lines. Comments are begun with a semi-colon (;) and all text
appearing after it until a newline is ignored by RNL.

4.1.1. Using the RNL Control File
The only required modification to the start up of RNL is to add the name of the file that

*contains the RNL commands and looks like,
% ral control file

where you can substitute any filename that suits you for control file. When using a control
file RNL works rather quietly. Below you will see the output from the control file described
above.

Loading uwsiml
Done loading uwsiml
; 8 nodes, transistors: enh--0 intrinsic =0 p-chan=0 dep=0 low-power=0 pullup-0 resistor=0

Clearly most of output that wu generated interactively is gone. In fact we are left with only
the fact that uwsiml has been loaded and a summary of the preprocessed network from the
read-network command. As shown below we can now set the input low and run a simulation
just as was done before.

lie
done

5

Step begins 0 0 ns.
inO 0
out=l @ 0.6

Current state:Current time- 100

r'



UW/NW VLSI Consortium NETLIST/PRES[M/RNL - A Tutorial

in=O out=1
done

A useful technique to develop is one where the simulation experiment is verified interac-
tively and is then followed by a larger simluation run in batch mode. This can be done with
the use of the control file by adding simulation commands. Some care must be used here as
some of the commands require a slightly different syntax when used in batch mode. For
example when nodes are to be set at some input value (h, I etc.), in batch mode the nodes
must be in the form of a quoted list (recall '(,))

(h '(hl a2 0)),

the command to run a simluation step must also have the special quoted list, the empty list

(8 '0).

This is the result of the RNL Lisp interpreter having a special form only for interactive com-
mands. The discussion of this is in section 5.

4.2. Useful Additions

To this point we have run through an example interactively and shown how one can con-
dense the frequently used commands into an RNL control file. In this section, additional
commands that can be used either interactively or through the control file will be explored.

4.2.1. Bues.

A very common situation in design is to have a group of signals that work together (i.e.
buses). When doing simulation it would be most useful to be able to give these signals a name
and refer to the whole set by that name. The uwsiml package provides this through a set of
vector commands. An example (albeit overly simple) of this would be to define the nodes in
and ow in the inverter example as a vector. This is done with the following command,

(dotvec '(bin Inootwec In out))

The template for this command is

(defvec '(radix name list of nodes))

Dtvee is the command name and notice that a familar piece of syntax has appeared spin, the
quoted list (begins with '( and ends with )). Radix is the number base that the vector will be
printed in when you request that it be displayed. The choices are the familar set, bin ->

binay, oct .> setal, hot -> hoandeelual and doe -> dchaJ. List of nodes can be any
number of nodes that defines the vector. In our case there are 2 in and ous.

Vectors are a special data type that are composed of lists of nodes. There are functions
provided for setting the vector's value (Invec) and finding out how a vector is defined (vec.
mies). These functions are detailed in section 72 of the RNL User's Guide. The handiest
place for vectors however is when they are used in dot-report.

; All text appearing after a semicolon is a conent nd Is gnored ; (1)
; ni eontrol file for the inverter example ; (2)
(og-Ale in.l') ; (3)
(load "wstd.) ;(4)(lad " j,; (4)

(€ldlt '(in out)) (7)

(e.-lg- 16-

L.#.' . . ... . ....., ................. .... .... ... .... •,•.. ,.......,. .. .. .. .. •



UW/NW VLSI Consortium NETLIST/PRESINtIRNL - A Tutorial

(defvc '(bin aioutvec in oat)) ; (8)
(def-report '(Curreat State.- newlins (vec Inootvec))) (9)

8 This control file is quite similar again to the one shown earlier but now on line 8 we
have made use of the defvee command. In this case the radix has been set to binary
and the name has been set to inoutvec. The signal names (nodes) in and ow finish
the definition of the vector.

9 The det-report command also reflects the use of defvec. Now the report uses vec
which is defined to print the value of the named vector (e.g. inovec). Recall in
declaring the vector we specified a binary radix. Vec reports the vector in this radix.
This format replaces the individual node names and values we used earlier. Assum-
ing that we have either given RNL a control file with this report or interactively
declared a report the results of a step of simulation would be

f in (1)
done , (2)
* , (3)

(4)
Step begins @ 0 ns. ,(5)
in=0 @ 0 ,(6)
outl- @0.6 , (7)
Current State: (8)
Current time= 100 (9)

(10)
inoutvc =0b01 (11)
done (12)

11 The individual nodes and values have been replaced by the vector we declared. The
name and the current value of the vector is reported. The prefix Ob reflects the
radix that was declared when the vector was defined. The other radix flags follow
the UNIX convention (0 -> octal, Ox -> hex). One can also mix the printing of
nodes and vectors thus

(def-report '('Curremnt State' newlne in out (vec Inoutvee)))

would be another way we could format the report.

43. Event file

A very useful command for displaying and interpreting the results of your simulation is
openplot. This command has the following template

opemplot plotfilename

Note there are no parenthesis surrounding this command as there has been with the others
that have been discussed. The effect of issuing this command is that all transitions that were
requested with cbftin are entered into the file plot file-name. This file can then be used as
input to programs that display the time series trace on either a 4010 compatible terminal or a
Printronix raster printer. The details of the use of these programs are described in the man
pages for dmnscope and mstp.

At the end of the simulation the file is closed with

doueplet "plot-flemiame

Again the parentheses are not used.

-17-



UW/NW VLSI Consortium NETLIST/PRESIM/RNL -A Tuto~rial

4.4. Local Network Walks
When working interactively, two commands that allow local areas of the network to be

examined are presented. The first one allows the user to obtain all transistors that are gated
by the node in question and any sum-of-products functions of which it is an input. This com-
mand will be referred to as a toward reference. The second command reports the list of
transistors for which the node is either the source or drain and a summary of its sum-of-
products representation if any. This wiil be referred to as backward reference. In the follow-
ing example we will investigate the SR latch described earlier with these commands.

is,(1
S=H [NOTE: node is an input] (A=0.30 Ah=0.80) (0.019200 p1) affects: ; (2)
input to functions for the following nodes: ; (3)

1 ,(4)

done ,(6)

? (7)
1=L (41=0.3D vhO-.80) (0.062800 pf) is computed from: ,(8)

CMOs ,(9)
(nor (n-chan (and S=H )) resistance [1.OOe+04, 1.00e+041 (10)

(p-chan (and S=H)) resistance [5MOe+03, 5.00e+031 (11)
) ,(12)

done '(13)
11 ,(14)

I=L (vl=0.30 vh=0.80) (0.062800 p1) affects: ;,(15)
input to functions for the following nodes: ;,(16)

0 ,(17)
Q (8

done ,(19)

? Q (20)
Q=H (vl=0.30 A-0.80) (0.1=80 pf) is computed from: ; (21)
CMOs ; (22)

(nor (n-chan (and I=L Q-L )) resistance [2.00e+04, 2.00e+04] ; (23)
(p-chan (and I=L )) resistance [1.00e+04, 1.00c+041 ; (24)
(p-chan (and 0-1. )) resistance [l.OOe+04, 1.00e+041 ; (2S)

)~ ,(26)
done ,(27)
1 Q ; (28)
Q=H (vl=0.30 vh=-0.80) (0)12800 p1) affects: ; (29)
input to functions for the following nodes: ;'(30)

(31)
0- ,(32)

done ,(33)
? Q. (34)

0--L (vl=0.30vA-O,80) (0-1M80 p1) is computed from: ,(35)

CMOs ; (36)
(nor (n-chan (and 2=H Q=H )) resistance [2.00e+04, 2.00e+04J ; (37)

(p-chan (and 2=H )) resistance [1.00e+04, 1.Oe+041 ,(38)
(p-chan (and Q=H )) resistance [1.00e+04, 1.00e+041 ; (39)

;(40)
done ,(41)

I Q.,(42)
Q-=L (vl=0.30 vh=0.80) (0.012800 p1) affects: ,(43)

* input to functions for the following nodes: ,(44)



UW/NW VLSI Consortium NETLIST/PRESMI/RNL - A Tutorial

Q ; (45)
0 ;,(46)

done ;(47)

I to 6 This is the output of the forward reference command (!) for one of the inputs to the
SR latch described earlier. Line 2 summarizes the parameters for node S. Several
things should be observed here. First note that this node is considered an inpaa.
This is because the node has been set by of the command b. Similarly if I or . were
used this messages would appear. The next parameters show the logic threshold
values (voltage is normalized to 1.0) for the node. For a discussion of these values
the reader is referred to section 2 of the RNL User's Guide. Next the total load
capacitance is given in picofarads. Finally a summary of all nodes that this node is
an input is reported. In this case only node I is affected. Recall that in building the
SRlatch we used local nodes for the output of the inverters. The node I is one of
tue NETLIST generated nodes we talked about. If there were transistors that this
node gated they would be reported next. The template for a transistor report is

type gate source drain resistance-values

All of these parameters have their usual meanings (e.g. resistance in ohms).

7 to 12 We can continue the local network walk with a backward reference (?) for node l.
Line 8 is similar to the forward reference but note how this node is not an input. It
is computed from the function shown in lines 9 to 12. This is what a summary of a
CMOS inverter looks like. The technology is indicated in line 8. This is followed
by a list of each of the product chains in the sum-of-products description. Each pro-
duct chain is prefixed with the type of transistor (n-chan or p-chan). In this case
each product chain consists of just the one input S. At the end of each list of inputs
a summary of the total resistance computed by PRESIM is given. The first of the
two resistance values is used in computing the state of the node and the second is
for estimating the delay time of the transition if any. Details are given in the RNL
User's Guide in section 2. Again resistance values are given in ohms.

14 Pressing on with the forward reference I of node I we find that it is the input to the
node Q (see line 17).

20 Node Q definition is then obtained with a backward reference ?. The function
definition follows substaintially the same form. The pulldown product term (It is
the pulldown product because it is formed from n type transistors.) contains 2 inputs
I and Q-. The pullup is composed of the first two term sum-of-products encountered
that is, the two single term pullup products are ored together (I or Q-). This is the
general form for nand gates. The dual of this combination of p and n transistors
would be the pattern for a 2 input nor gate. Again each term is followed by its
resistance values.

28 This is the forward reference for the node Q-. And here we find the effects of the
cross-coupled nand gates forming the flip-flop in the SR latch. Note that Q- is a
function of Q and vise versa (see line 45). Also the other local node from the
second inverter is an input to Q-. Again NETLIST used numeric node names for
these nodes and such names should be avoided elsewhere.

From this example then we have shown how the forward and backward reference com-
mands can be used to get a feel for where a node lives in the circuit. This is particularly use-
ful when portions of the circuit appear to be misbehaving. These commands can ensure that it
indeed is "wired up" correctly.

.19-

* .



UW/NW VLSI Consortium NETLIST/PRESIM/RNL - A Tutorial

4J. -a ns

:-. 4.$. Summary ..

This completes an example for running RNL. This example is by no means exhaustive.
In fact the Lisp command interpreter available in RNL makes the possibilities for elaborate
simulation commands very attractive. Recall that one of the first things that we did during
our session was to load the files uwstdl and uwaiml. These files represent some of the versa-
tility of this interpreter. In the next section we will examine portions of these files for exam-
ples of how one might construct their owit commands.

S. RNL LISP: SOME XAhMLXS

This section is a tutorial introduction by examples to programming in RNL Lisp. The
particular examples chosen are taken directly frm the package uwaimi. They were chosen to
be instructive not only from the standpoint of being examples of Lisp functions, but also
because they are prototypical of the kinds of functions that a user may want or need to write.
We are deliberately encouraging users to write their own user interface functions by copying
these examples and modifying them.

5.1. The RNL Lisp Interpreter.

In order to discuss the writing of Lisp functions we first present a brief introduction to
the Lisp language and the Lisp interpreter. If at first you do not understand what is going on
we recommend the following strategies: study the examples, reread this section carefully, and,
most importantly, play with RNL interactively. Because Lisp is interactive you can often
learn a lot more in a few minutes of hands on experimentation than in hours of staring at
textbooks and manuals. The "rear Lisp systems that most resemble RNL Lisp are MACLisp
(from MIU) and the Fran Lisp (from Berkeley). If you do consult other texts and manuals,
ones that use either of these dialects will be the most useful.

It has been claimed that rather that standing for "LISt Processing" that Lisp is really an
acronym for "Lots of Irritating Single Parentheses". Although the Lisp syntax is simple,
elegant, and powerful, it has the unfortunate property that a user can easily wind up wasting
time trying to balance parentheses and trying to understand poorly formated Lisp code.
There are two things that one can do to minimize this problem. The first is to use care in for-
matting your Lisp functions. Don't put too much on one line and use a consistent indentation
style. The second thing that you can do is to use a screen-oriented text editor with a Lisp
mode (e.g. EMACS) that helps you to keep track of the parentheses and indentation.

3.1.1. Evaluation

Perhaps the most fundamental concept in Lisp is the evaluation of a Lisp object. Lisp
objects are also known as S-expressions (The "S" stands for "symbolic'.) and we will often just
call them "expressions". The universe of Lisp objects is divided into two classes: primitive
objects (also known as "atoms"), and lists.

In RNL Lisp there are several kinds of primitive object:

symbols are like variables in other programming languages. Each symbol potentially has a
value, a functional definition, and a list of properties. In addition, it has a print name
by which it is known, both on input and output. Usually print names are terminated
by "white space" (spaces, tabs, and newlines), but print names containing these and
other special characters can be entered by quoting the name with vertical bars (e.g.
dlong.name with white spacel is a symbol).

numbers can be integers or floating point numbers.

strins are pieces of text surrounded by double quotes (e.g. "this string").

nodes correspond to the electrical nodes of the circuit you are simulating. This is a data .-.

type not found in other dialects of Lisp. The print names of nodes can resemble sym-
bols or numbers. If a symbol or number is used where a node is expected then RNL

automatically tries to convert to the node with a similar print name. In addition,

- 20-

4' .
.



UW/NW VLSI Consortium NETLIST/PRESIM/RNL - A Tutorial

. nodes can be named as lists of the form (-stract- a b c etc) where each of a, b. c, etc.
are either symbols or integers. Lists like this name nodes with nan-.s like abc etc.
This allows you to create hierarchically structured naming schemes for your circuits.
If you try to enter abcaetc then the RNL interpreter will convert it to a list rather
than a symbol, so if you want to have symbols with periods in their print names you
have to use the vertical bar convention, cg. lhab.ctcl.

A List is a sequence (a list) of Lisp objects that is bracketed with parentheses. Lists can
and do contain other lists. For historical reasons the first element of a list is known as the
"car' of the list and there is a function, car that extracts it from a list. The list formed by
removing the ew is known as the 'cdr (pronounced "Ikoo-der) and is extracted using the
function edr.

Example: ((a b) (c (d)) e)

This is a list of three elements. The first element (the car) is the list (a b). The second ele-
ment is the list (c (d)), and the last is the symbol e. The :dr is the list (( (d)) e). Note that in
the second element that (d) is a list of one element, not a symbol. Note also that the edr of
((c (d)) e) is the list (e) (i.e. (c (d)) is one element of the original list). The edr of (e) is the
empty list 0. The empty list is synonymous with the symbol nil.

That is all there is to Lisp data structures: atoms and lists. From these you build data struc-
tures, function definitions, and commands to the interpreter.

5.1.2. Evaladou

The central idea in the execution of Lisp programs is that of the evauio, of Lisp
objects (expressions). Evaluation is a process that interprets a Lisp object and returns some
other Lisp object, its value. The evaluation process can have side effects.

The evaluation of atoms is straightforward. When a symbol is evaluated the object the
interpreter returns is the one that was most recently assigned to be the symbol's value. In
other words, a symbol acts just like a variable in other programming languages. All the other
types of atoms (numbers, strings, and nodes) are what is called "self-evaluating'. That is, these
objects and their values are identical.

The evaluation of lists is a little more complicated. In the interest of completeness we
will give all the gory details here, but keep in mind that the simplest case is the most common.
Usually lists are function calls, but sometimes they are what are called "special forms'. In all
cases, the ear (first element) of the list being evaluated controls what will happen.

If the car of the list being evaluated is a symbol then the interpreter checks whether it
has a function definition. If not, then the interpreter evaluates the symbol and uses the
result as though it were the original car of the list.

If the car is an atom other than a symbol then this is an error because these types of
atom cannot have function definitons.

If the car of the list being evaluated is itself a list then the interpreter first checks to see
whether it is a function definition (see below). If it is not a function definition, then it
is evaluated and the result is used as though it were originally the car of the list.

In this way, the interpreter repeatedly (recursively) evaluates the car of the list being
evaluated until a function definition is found. Although this sounds complicated, the simplest
case in which the ear is a symbol with a function definition is the most common form and all
other forms are extremely rare in circuit simulation applications.

.1.3. Fmctin Deflialtiens

S Function definitions come in two flavors. There are the built-in functions (including spe-
cial forms) and there are user-defined functions. If you should print one of the former it
would appear to be a funny symbol such as PS66506. This indicates that the symbol is a
built-in function or special form.

-21-

.....



UWINW VLSI Consortium NETLIST/PRESIM/RNL - A Tutorial

A user defined function definition appears as a list that looks like:

(lambda (x y) (+ 3 (0 I y)))

The symbol lambda is a special symbol that means 'This list is a function definition. Do not
continue evaluation. The list *(x y) names the symbols that act as the formal parameters to
the function. The remainder of the list is the body of the function and is composed of a
sequence of Lisp expressions (objects) that are evaluated in left-to-right order when the func-
tion is evaluated. The particular function defined above returns a value three greater than the
product of its two parameters.

Thus far in our narrative the interpreter has reduced the car of the list it is evaluating to
a function definition. If this is an ordinary function definition then the next step is the
evaluation of the arguments to the function. Each of the remaining elements of the list is
interpreted as an argument to the function. They are evaluated in left-to-right order and the
objects returned are used as the values of the formal parameters of the function.

Finally, the body of the function is evaluated using these parameter values and the value
returned is the last value returned when the body is evaluated.

Let us look in detail at the evaluation of the following expression:

((lambda (x y) (+ 3 ( x y)) 8 k)

The interpreter goes through the following steps:

1. First the car of the list is found to be a user-defined definition of a function with two
parameters called x and y.

2. The next element in the list is evaluated. It is the integer 8 and is thus self-evaluating.

3. The last element in the list is the symbol k. Suppose that its value is 5.

4. Because x and y are the formal parameters of the function, their values are set to 8 and
5 respectively when the function is entered. When the function is exited the values they
held previously will be restored.

5. The body of the function '(+ 3 (0 x y)) can now be evaluated:
a. The symbol + is found to have a built-in function dcfinition and the first argument

evaluates to 3.
b. The second argument to + is the list "(* x y'. When it is evaluated a built-in

definition is found for multiplication, x has the value 8, and y has the value S. The
expression "(0 x yr' therefore evaluates to 40.

c. Both of +'s arguments are now evaluated so the addition can proceed, returning 43.
This completes the evaluation of the body of the function.

6 Since the last value returned in the evaluation of the body of the function is 43, this is
also returned as its own value.

.1.4. Fumcttns Versus Special Form.

When a user-defined function is encountered as the car of a list all of the remaining ele-
ments of the list are evaluated and the results passed to the function as arguments. Further-
more, the number of formal parameters in the function definition and the number of argu-
ments actually passed must agree.

The built-in function definitions do not have the same restrictions. Some functions can

take a variable number of arguments. An example is the + function. It returns the sum of an
arbitrary number of arguments. There are other built-in functions that do not evaluate one or
more of their arguments. An example of this is the ustq function that is used to set the value

*J of a symbol. Evaluating the list

(setq syml (foo a b c))
|= ..

- 22 -

:.,:;..::'';,.!., 2 . " "- " " " > -""- - "" " - " ." •"-.---...-..• .".". '' . --- .-\, .".''. ' .'-A'-.



UW/NW VLSI Consortium NETLIST/PRESIM/RNL - A Tutorial

has the side effect of setting the value of its unevaluated first argument (in this case, the sym-
bol symi) to the result of evaluating its second argument. This is also the value returned by
the stq function.

Other symbols have built-in definitions that do not act at all like functions. These are
called "special forms'. For example, the lambda symbol is a special form that indicates func-
tion definition. Other special forms are used to define program control structures. While
these special forms may return values analagouuly to functions, their interpretation is very
different from that described above. For example, evaluating the list

(defun crunch (x y) (+ 3 (0 x y)))

has the side effect of setting the function definition of the symbol crunch to the list:

(lambda (x y) (+ 3 (0 x y)))

In this case none of the elements of the list are evaluated as arguments. (The result returned
in this example is the symbol cruch.)

The quote special form is especially useful. It returns its argument without evaluating it.
That is, if you want an object rather than its value you can use quote to inhibit evaluation.
This is so useful that it has its own special alternate input syntax. The form 'obJ is translated
to (quote obJ) where obj can be any Lisp object. For example, if you type the expression:

(setq a "(x y z))

to the interpreter (note the two single quotes), then it will return the object:

(quote (x y z))

Because the self-evaluating objects (numbers, strings, and nodes) do not need to be quoted,
they are also sometimes referred to as 'self-quoting.

5.2. The 'Top-Level Loop"

Now that we have introduced the data structures and the idea of evaluation in Lisp, we
proceed to introduce the user interface to the RNL Lisp interpreter. The interface is called
the "top-level loop' and consists of the following:

1. Read a Lisp object from the current input.
2. Evaluate the object read in step 1.
3. If the current input is the terminal then print the result of step 2.
4. Go to step 1.

The input to the interpreter is buffered on a line by line basis. Thus, RNL does not see
anything you have typed until you enter a 'newline" and you can use the standard "within
line* editing of the system keys to modify the input before you enter it. Even though you
have completed a line, RNL might not have read a complete Lisp object and therefore might

not respond to you. For example, suppose you enter the fines

(+3

43

(We use the convention that user input is displayed in bold type.) After you enter the second
line RNL responds by evaluating the expression and printing the result, the number 43. Note
that it did nothing after you entered the first line because it had not read a complete Lisp
object at that point.

In order to reduce the number of parentheses you have to type, RNL Lisp has a special
alternative syntax you can use. If the first thing on a line is a symbol then RNL interprets it
as a function name, creates a quosted list out of the rest of the line, and passes that list as
the only argument to the function. For example, the following two lines of input are

-23-



UW/NW VLSI Consortium NETL[ST/PRESIM/RNL - A Tutorial

interpreted identically because the 'reader" of the top-level loop converts the second line into
the first line. (Lmagth counts the number of elements in a list.)

(legth '(a b c (4 5) 3 25 UE))
7
length a b e (4 5) 3 25 5.0
7

You should remain aware that if you are using this alternative syntax that the entire command
must be on a single line. While this is convenient for invoking some kinds of functions it does
make it awkward to find the value of a symbol. Consider the following sequence:

(setq s 23)
23
a
;illegal function object
23
(sed ,a)
23

Because of the alternate syntax, when we tried to get the interpreter to evaluate the symbol a

as an expression, the "reader actually created the list

(a '0)
and that is what was evaluated. The function oval evaluates its argument an extra time, so
passing a quoted symbol to it results in only one evaluation being done.

The discussion of evaluation in the previous section covets the case in which everything
works. Inevitably, however, there will be errors such as the one above in which no function
definition was found for the symbol a. Whenever an error like this is detected an error mes-
sage is printed and all current attempts to evaluate Lisp objects are aborted. This leaves you
back in the top-level interactive "read-eval-print" loop. A particularly troublesome aspect of
this is that if an error is detected while you are using the load function to read a command
file that the load itself is terminated by the error so that the remainder of the file will not be
read.

Note that the result of evaluating a command is printed only when input is being taken
from the standard input. This may make it difficult to locate errors in command files that are
being loaded'.

6. EXAMPLES FROM uwsimi
To make things clearer we proceed to look at some examples taken directly from -wsinj.

These examples are augmented with line numbers in square brackets at the left. These
numbers are not part of the code but have been added for the purposes of this presentation.

While a large part of most command files is the definition of functions and data struc-
tures that will be used later, part of all command files is the initialization of wglobar symbols
that parameterize those functions.

11 (setq incr 1000)
[2] (setq switch-level nil)
(31 (setq relative-timing t)

These three commands use the etq function to set the default values of parameters that are
used to control your simulation. Line 1 sets the value of the symbol Iner to 1000 RNL time
units (100.0 nano-seconds). Line 2 ensures that the simulator will use the RC model for simu-
lation rather than the unit delay switch model and line 3 sets a flag that forces the stop func- -

tion (see below) to report simulation times relative to the start of the simulation step. These
lines illustrate the concept of self-evaluating objects. The number 1000 evaluates to itself.

-24-
-U



UW/NW VLSI Consortium NETLIST/PaES[MIRNL - A Tutorial

The two symbols al and t are predefined by the Lisp interpreter so that they are their own
values. In addition, nil has the semantics of being identical to the empty list, 0-

run a simulation step and print a report at the end
(1) (defun s (dummy)
12] (step inr)
[31 (wr-report)
[41
This example illustrates the definition of the function a used in section 4. The function a does
not add any real power to the user interface, rather it serves the purpose of reducing the
amount of typing you need to do. This runs the simulation for a time increment of the
current value of the symbol her and then calls the function wr-repor with no arguments to
write out a summary report at the end of the step.

Note that a has a dummy parameter called dummy. This is because a is intended to be
used interactively using RNL Lisp's alternate syntax. When you type s on a line by itself
without any parentheses, the reader converts it to the list (s '0). In order for a to work
correctly it must expect to see one argument even though that argument will be ignored.

(defun _prinnum (base num) ; only called to bind the right val to base
(princ num))

The function .prinnom is used by various other functions in the uwsiuJ package. Its job is
to print an integer in the radix specified by base. The Lisp printing routines use the current
value of base to control the radix used for output. By naming one of the parameters of
_prtnnum base we use the argument binding mechanism of RNL Lisp to temporarily change
the value of base to the desired value. When prne is called, this is the value it uses. When
__prlnm returns the previous value of base is restored.

This example illustrates the principle of dynamic variable scoping in Lisp. Programming
languages such as C or Pascal have what is known as a textual, or static, scope rule for the use
of local variables. That is, the part of a program that sees a particular local variable is stati-
cally limited to the text of the routine in which it is defined. In contrast, Lisp uses a dynamic
scope rule. When a Lisp special form (eg. a function definition) uses a symbol as a *local
variable (e.g. a parameter), then the old value of the symbol is saved away and is restored
only when the special form returns. Any functions that are called before the special form
returns will see the new value of the symbol. Furthermore, any changes made to the value of
the symbol will be lost when the old value is restored.

[c2fix sets the STOPONCHANGE raeg for the nodes in 
[1h (defun chfig f
[2) (do ((here (cdr here)))
[31 ((null here) 1)
[41 (stop-on-change (car here) t)
[51 ))

The function elag takes as an argument a list of nodes. It sets the STOPONCHANGE
flag for each of the nodes in the list. We use it as an example to introduce the do special form
and, in particular, to show how a do is typically gsed to perform a function on each of the ele-
ments in a list. Note that although ehiag has thst the one argument (the list 1), the list itself
is not of fixed length.

Line 1 defines chfl to be a function with a oingle argument called 1. Line 2 begins a
do form. A do is a generalized iteration construct that allows you to define multiple local
symbols to be used in the iteration. While a repeat increments its single local symbol on each

r iteration, a do allows arbitrary computations to be done on to get the new values of its localsymbols.

.. 25-



UW/NW VLSI Consortium NETLIST/PRES[M/RNL - A Tutorial

The first thing that follows the do is the list of local symbol declarations. In this case
there is only one element in that list, the declaration of here. A declaration is a list of one to
three elements. The first element is a symbol, in this case here. The second (optional) ele-
ment of the declaration is evaluated to get the initial value for the symbol, in this case return-
ing the value of I. The third (optional) element in the declaration list is an expression that is
evaluated at the beginning of each successive iteration and whose result then becomes the
value of the symbol at the start of that iteration. In this case it is °(cdr herer. Thus, here is
defined to initially be the original list of nodes and on each successive iteration here is shor-
tened by dropping the current first element.

The next thing in a do following the declarations list is an 'exit clause. This is on line 3.
An exit clause consists of a list of expressions. The first expression (sometimes called the
predicate) in this list is evaluated at the start of each iteration. In this case it is the expression
(mall here). In Lisp 'true' means 'anything other than nmi. When a built-in function has to
return a value meaning "true" it uses the symbol t, but any non-nil Lisp object will do. When
the value of the predicate of the exit clause becomes true (think of it as "non-nil") then all of
the expressions in the rest of the exit clause are evaluated in left-to-right order and the loop is
exited, returning the value of the last expression in the exit clause. In the example, the predi-
cate (null here) will be true when here becomes nil (the null or empty list), that is, when we've
removed all of the node elements. The last expression in the exit clause is the symbol L, so the
loop returns its value. Since the do is the last (only) expression in the definition of the chfla
function, the value of i is also the value returned by it.

The remainder of the do form is a sequence of expressions that are known as the body
of the loop. The expressions of the body are evaluated on each iteration in which the predi-
cate of the exit clause is nil. In the example the body is the single expression that is a call to
the primitive function stop-m-chsmlp with the ear (its first element) of here as the first argu-
ment and with t as the second. This has the effect of flagging the node so that the simulation
is halted whenever the node changes state so that the event can be reported or some other
special action can be taken.

; Run a simulation step, reporting transitions
[11 (defun step (incr)
(21 (printf 'Otep begins @ %S ns.0 (float current-time) 10.0))
[31 (do ((stop-time (+ incr current-time)) (savex (* current-time 1))
[41 (n t))
[51 ((null n))
[61 (setq n (cond (switch-level (switch-step stop-time))
[71 (t (Sim-step stop-time))))
[8) (coud (n (dpy-node-trans n)
[91 (printf "@ %SO
[101 (/(cond (relative-timing (- current-time savex))
[11] (t (float current-time)))
[121 10)))
(131 (t nil)))
[141 )

The function step is interesting to look at for a couple of reasons. It is the function that
one uses to simulate a circuit for a particular time increment and is therefore worth knowing
about both for having an understanding of what is going on and also in case one wants to
modify it. It also contains a more complicated example of a do as well as introducing the cord
special form. The first thing done (line 2) is to print out the current elapsed simulated time in
nanoseconds.

The RNL provided simulation primitives (im-step and switch-step) both operate by
advancing the simulated time until either the specified stop time is reached (returning anl in
this case), or until some circuit node that has been flagged changes state (returning the node

-26-

,,..-. '.... ...- ..-,.-.-..- .....- ".,.'.-'.... ... ;.... .... ,.............................................................-.,.-..-...,..-,.,-.,...-,"....,,-.......,-,



UW/NW VLSI Consortium NETLIST/PRESIM/RNL - A Tutorial

that changed). The function step uses these primitives to run the simulation for the fixed time
increment specified in the parameter lowr. Once the beginning time is printed, the body of
the function is loop implemented with a do. On lines 3 and 4 the local variables are defined.
Step-tim. is initialized to be the time to stop the simulation step, max is initialized to be the
time at which the step started, and a, which will be used to hold the value returned by each
cail to the appropriate simulation primitive, is initialized to . Since the simulation primitives
return all when the appropriate stop time is reached, (null n) is used as the predicate (line 5)
of the exit clause for the loop.

Lines 6 and 7 are the call to the simulation step. A ced special form consists of the
symbol cond followed by a number of lists of expressions known as clauses. These are similar
to the exit clause of a do. In a cemd the clauses are examined in left-to-right order. For each
clause, the predicate is evaluated and if it is true (returns other than nil) then the rest of the
expressions in that clause are evaluated and the etid is exited, returning the value of the lat
expression evaluated. In the comd on lines 6 and 7, if siwlch-level is not all then switch-step is
called, otherwise (since the value of t is t) im-step is called. Since the value returned by a
cod is the last value computed in the clause that is executed, the value returned by this coed
will be the value returned by the appropriate simulation primitive. This value is either a node
with its STOPONCHANGE fdag set or nil and the sq on line 6 makes it the value of a.

The first clause of the coed on line 8 is executed if the value of a is not all. It first
passes a to the function dpy-mode-traas and then prints the current time, either relative to
the start of the step or in absolute terms, depending on the value of the symbol relative.
timngl. The default clause (line 13) is included just for readability.

To summarize, the body of step repeatedly calls a simulation primitive until that primi-
tive returns a nil to indicate that the desired termination time has been reached. Each time
the simulation primitive does not return all it is because a flagged node changed state, and a
reporting function is called.

;; run n clock cycles
[1 (defun c (n)
[2 (cond ((eq n nil) (setq n 1))
[31 ((not (numberp n)) (setq n (car n))))
[4) (do ((index 0 (1+ index))
[S1 (i 0))
(61 ((-- index n) (wr-report))
[71 (set-node 'phil 1)
[8) (set-node 'phi2 0)
(91 (step incr)
[101 (set-node 'phil 0)
[111 (step incr)
(121 (set-node 'phi2 1)
[131 (step incr)
[141 (set-node 'phi2 0)
[1 (step incr))
[161 )
The function e runs the simulation for one or more cycles of a two phase (four interval) non-
overlapping clock defined using the predefined node names "phil and "phi2". This is written
to take advantage of RNL Lisp's alternate input syntax. The symbol a will be the number of
cycles to simulate.

The cemd in line 2 is used to set n to the correct value. The first clause sets the coua to I
if the arguwnr to e is the empty list (all) as would be the case if the command were entered
by typing "e on a line by itself. The second clause is used to differentiate between the cases
of calling c using the standard parenthesized syntax (e.g. (c S )) or the interactive syntax (e.g.
.c 7 on a line by itself).

* -27-
-- . .--... . .



UW/NW VLSI Consortium NETLIST/PRES[MiRNL - A Tutorial

The rest of the body of c is a simple do loop that uses Index as the loop index to count a
clock cycles and call wr-report when it exits. Lines 7 through 15 handle the mechanics of rais-
ing and lowering the clock lines as appropriate and advancing the simulated time by calling
step. If the circuit you are simulating uses a different clocking discipline then you should
write your own "clock cycle" function analagous to c. The code for c provides a reasonable
template to modify for your own needs.

;unchanged-since returns a list of the nodes that are unchanged since time.
[11 (defun unchanged-since (time)
[21 (prog (uc-Ust)
[31 (walk-net '(lambda (n)

[41 (cond ((<c (node-time n) time)
[.1 (setq uc-list (cons n uc-list)))
[6] (t uc-list)
[7]
[81

The function lChangd-dace introduces some new Lisp constructs and also illustrates the
usefulness of the walk-aet primitive when you want to examine all the nodes in your circuit.
Unchaned-saco returns a list of the nodes whose last transition occurred prior to the argu-
ment time.

The prog special form is used to define local symbols. After the symbol prq comes a list
of symbols that are to be made local and following that list is a sequence of expressions.
When a prog is evaluated the old values of the symbols in the list are saved, their current
values are set to nil, and the sequence of expressions is evaluated. When the evaluation is
done the old values of the local variables are restored and the result of the evaluation of the
last expression in the sequence is returned as the value of the prog. In this case, the only
local symbol is uc-list and the value of the prog will be the result of evaluating the walk-met
function.

The walk-not function takes as its argument a function definition or a symbol that has a
function definition. Walk-net then traverses the circuit and for each node it passes that node
to the function and evaluates it. The value returned by walk-not is the value returned by the
function the last time it was called.

In the example we didn't want to bother with giving a symbol a function definition, so
we used the lambda special form to define an 'anonymous' function definition. This
anonymous function will build a list of nodes that have not been recently changed and keep it
as the value of uc-list.

The predicate of the first clause of the coed beginning on line 4 tests (using the <
predicate) whether the most recent node transition time of the parameter a was before the
threshold time. If so, then it sets the value of uc-list to be the list consisting of x as the first
element followed by the the list that was the previous value of uc-cist. This is done by the
cons function. Note that this returns the list as its value. If the node has been recently
changed then tLe 'default' clause (line 6) of the tond is executed, returning the unchanged
value of uw-list. The function defined by the laibda thus always returns the current list.
Walk-not therefore will return the final value of the list and therefore so will the pros and
therefore so will aneamgd-daeo.

;i 6.l. Summary

We hope that by presenting these examples in detail that we have made a little less
imposing the prospect of writing your own Lisp functions as part of your RNL simulation.

.28-

1D -28-



SPICE User's Guide

A.Vladimirescu, KJahe Zhang,.
A R.Newton, DO .Pederson, A.Sansiovann-Vincenseil

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, Ca., 94720

This manual correspods to SPICE verion 206

Acknowledgement: Dr. Richard Dowell and Dr. Sa!ly Liu have contributed to develop the
present SPICE version. SPICE was originally developed by Dr. Lawrence Nagel and has
been modified extensively by Dr. Ellis Cohen.

SPICE is a general-purpose circuit simulation program for nonlinear dc, nonlinear
transient, and linear ac analyses. Circuits may contain resistors, capacitors, inductors, mutual
inductors, independent voltage and current sources, four types of dependent sources,
transmission lines, and the four most common semiconductor devices: diodes, Bits, JFET's,
and MOSFET's.

SPICE has built-in models for the semiconductor devices, and the user need specify only
the pertinent model parameter values. The model for the BIT is based on the integral charge
model of Gummel and Poon; however, if the Oummel- Poon parameters are not specified,
the model reduces to the simpler Ebers-Moll model. In either case, charge storage effects,
ohmic resistances, and a current-dependent output conductance may be included. The diode
model can be used for either junction diodes or Schottky barrier diodes. The JFET model is
based on the FET model of Shichman and Hodges. Three MOSFET models are implemented;
MOSI is described by a square-law I-V characteristic MOS2 is an analytical model while MOS3
is a semi-empirical model. Both MOS2 and MOS3 include second-order effects such as
channel length modulation, subthreshold conduction, scattering limited velocity saturation,
small size effects and charge-controlled capacitances.

1. TYPES OF ANALYSIS

1.1. DC Amtysis

The dc analysis portion of SPICE determines the dc operating point of the circuit with
_ inductors shorted and capacitors opened. A dc analysis is automatically performed prior

to a transient analysis to determine the transient initial conditions, and prior to an ac smail-
signal analysis to determine the linearized, small-signal models for nonlinear devices. If
requested, the dc small-signal value of a transfer function (ratio of output variable to input

UW/NW VLSI Release 2.1 - I - 10/1/83

• ,..-,.,.°.-....- ., .,-..''....-'.. . ..- ........- ... ......-.......... ,................,.................. , -



UWINW VLSI Consortium SPICE User's Guide

source), input resistance, and output resistance will also be computed as a part of the dc solu-
tion. The dc analysis can also be used to generate dc transfer curves: a specified indepen-
dent voltage or current source is stepped over a user-specified range and the dc output vari-
ables are stored for each sequential source value. If requested, SPICE also will determine
the dc small-signal sensitivities of specified output variables with respect to circuit parameters.
The dc analysis options are specified on the DC, .TF, .OP, and SENS control cards.

If one desires to see the small signal models for nonlinear devices in conjunction with a
" -.". transient analysis operating point, then the .OP card must be provided. The dc bias conditions

will be identical for each case, but the more comprehensive operating point information is
not available to be printed when transient initial conditions are computed.

1.2. AC SmaUi-Signal Analysis

The ac small-signal portion of SPICE computes the ac output variables as a function of
frequency. The program first computes the dc operating point of the circuit and determines
linearized, small-signal models for all of the nonlinear devices in the circuit. The resultant
linear circuit is then analyzed over a user-specified range of frequencies. The desired out-
put of an ac small- signal analysis is usually a transfer function (voltage gain, transim-

-.i" pedance, etc). If the circuit has only one ac input, it is convenient to set that input to
unity and zero phase, so that output variables have the same value as the transfer func-

'. tion of the output variable with respect to the input.

_" The generation of white noise by resistors and semiconductor devices can also be simu-
lated with the ac small-signal portion of SPICE. Equivalent noise source values are deter-
mined automatically from the small-signal operating point of the circuit, and the contribu-
tion of each noise source is added at a given summing point. The total output noise level
and the equivalent input noise level are determined at each frequency point. The output and
input noise levels are normalized with respect to the square root of the noise bandwidth and
have the units Volts/rt H-z o Amps/rt Hz. The output noise and equivalent input noise
can be printed or plotted in the same fashion as other output variables. No additional input
data are necessary for this analysis.

Flicker noise sources can be simulated in the noise analysis by including values for the
parameters KF and AF on the appropriate device model cards.

The distortion characteristics of a circuit in the small signal mode can be simulated
as a part of the ac small-signal analysis. The analysis is performed assuming that one or
two signal frequencies are imposed at the input.

The frequency range and the noise and distortion analysis parameters are specified
on the AC, .NOISE, and .DISTO control lines.

1.3. Trandent Analysis

The transient analysis portion of SPICE computes the transient output variables as a
function of time over a user specified time interval. The initial conditions are automati-
cally determined by a dc analysis. All sources which are not time dependent (for example,
power supplies) are set to their dc value. For large-signal sinusoidal simulations, a
Fourier analysis of the output waveform can be specified to obtain the frequency domain
Fourier coefficients. The transient time interval and the Fourier analysis options are specified
on the .TRAN and FOURIER control lines.I 1.4. Analysis at Different Temperatures

All input data for SPICE is assumed to have been measured at 27 deg C (300 deg K).
The simulation also assumes a nominal temperature of 27 deg C. The circuit can be simulated
at other temperatures by using a TEMP control line.

Temperature appears explicitly in the exponential terms of the BJT and diode model
equations. In addition, saturation currents have a built-in temperature dependence. The

UW/NW VLSI Release 2.1 - 2- 10/1/83

• ...' ..-............. ,..,.......,....-........-.... .-... .-.....-................ ... .. .. ........ .. ............-...-...--.. _/...-..-...



UWINW VLSI Consortium SPICE User's Guide

temperature dependence of the saturation current in the BJT models is determined by:
'" " inm IS(T1)=IS(T0)[(fi ,)XTIe klf'i Fl -T

where k is Boltzmann's constant, q is the electronic charge, EG is the energy gap which
is a model parameter, and XTI is the saturation current temperature exponent (also a model
parameter, and usually equal to 3). The temperature dependence of forward and reverse
beta is according to the formula:

beta (T 1) -beta (TO) [ (f .)XTB I

* .~..where TI and TO are in degrees Kelvin, and XTB is a user-supplied model parameter. Tem-
perature effects on beta are carried out by appropriate adjustment to the values of BF, ISE,
BR, and ISC. Temperature dependence of the saturation current in the junction diode
model is determined by:

IS (TI)=is(T0)[ 0 J)( I) (kM *-T T O

where N is the emission coefficient, which is a model parameter, and the other symbols have
the same meaning as above. Note that for Schottky barrier diodes, the value of the saturation
current temperature exponent, XTI, is usually 2.

Temperature appears explicitly in the value of junction potential, PHI, for all the
device models. The temperature dependence is determined by:

PHI TEMP) q log (Ni (T)

where k is Boltzmann's constant, q is the electronic charge, Na is the acceptor impurity
density, Nd is the donor impurity den sity, Ni is the intrinsic concentration, and EG is the
energy gap.

Temperature appears explicitly in the value of surface mobility, UO, for the MOS-
FET model. The temperature dependence is determined by:

UO (TEMP) (TEM-

The effects of temperature on resistors is modeled by the formula:

value (TEMP) = value (TNOM) [ I + TC I (TEMP - TNOM) + TC 2 (TEMP - TNOM) 21

where TEMP is the circuit temperature, TNOM is the nominal temperature, and TC1 and
TC2 are the first- and second-order temperature coefficients.

2. CONVERGENCE

Both de and transient solutions are obtained by an iterative process which is terminated
. .. when both of the following conditions hold:

1) The nonlinear branch currents converge to within a tolerance of 0.1 percent or 1
picoamp (1.0E-12 Amp), whichever is larger.

2) The node voltages converge to within a tolerance of 0.1 per cent or I microvolt (L)E-6
o Volt), whichever is larger.

- -"Although the algorithm used in SPICE has been found to be very reliable, in some
cases it will fail to converge to a solution. When this failure occurs, the program will print
the node voltages at the last iteration and terminate the job. In such cases, the node Vol-
tages that are printed are not necessarily correct or even close to the correct solution.

Failure to converge in the dc analysis is usually due to an error in specifying circuit con-
nections, element values, or model parameter values. Regenerative switching circuits or cir-
cuits with positive feedback probably will not converge in the dc analysis unless the OFF
option is used for some of the devices in the feedback path, or the .NODESET card is used to

t1W/NW VLSI Release 2.1 . 3- 10/1183

,..-'..



UWINW VLSI Consortium SPICE User's Guide

force the circuit to converge to the desired state.

3. INPUT FORMAT

The input format for SPICE is of the free format type. Fields on a card are
separated by one or more blanks, a comma, an equal (=) sign, or a left or right parenthesis;
extra spaces are ignored. A card may be continued by entering a + (plus) in column I of
the following card; SPICE continues reading beginning with column 2.

A name field must begin with a letter (A through Z) and cannot contain any delim-
iters. Only the first eight characters of the name are used.

A number field may be an integer field (12, -44), a floating point field (3.14159), either an
integer or floating point number followed by an integer exponent (1E-14, 2.65E3), or either
an integer or a floating point number followed by one of the following scale factors:

T=IE12 G=IE9 MEG=IE6 K=IE3 MIL=25AE-6 M=IE-3 U=IE-6 N=1E-9
P=1E-12 F=1E-15

Letters immediately following a number that are not scale factors are ignored, and
letters immediately following a scale factor are ignored. Hence, 10, 1OV, 10VOLTS, and
10HZ all represent the same number, and M, MA, MSEC, and MMHOS all represent the
same scale factor. Note that 1000, 1000D, 1000HZ, 1E3, 1.0E3, 1KHZ, and 1K anl represent
the same number.

4. CIRCUIT DESCRIPTION

The circuit to be analyzed is described to SPICE by a set of element cards, which
define the circuit topology and element values, and a set of control cards, which define the
model parameters and the run controls. The first card in the input deck must be a title
card, and the last card must be a END card. The order of the remaining cards is arbitrary
(except, of course, that continuation cards must immediately follow the card being contin-
ued).

Each element in the circuit is specified by an element card that contains the element
name, the circuit nodes to which the element is connected, and the values of the parame-
ters that determine the electrical characteristics of the element. The first letter of the ele-
ment name specifies the element type. The format for the SPICE element types is given in
what follows. The strings XXXXXXX, YYYYYYY, and ZZZZZZZ denote arbitrary
alphanumeric strings. For example, a resistor name must begin with the letter R and can
contain from one to eight characters. Hence, R, Ri, RSE, ROUT, and R3AC2ZY are valid
resistor names.

Data fields that are enclosed in It and gt signs '< >' are optional. All indicated punc-
tuation (parentheses, equal signs, etc.) are required. With respect to branch voltages
and currents, SPICE uniformly uses the associated reference convention (current flows in the
direction of voltage drop).

Nodes must be nonnegative integers but need not be numbered sequentially. The
datum (ground) node must be numbered zero. The circuit cannot contain a loop of vol-
tage sources and/or inductors and cannot contain a cutset of current sources and/or capaci-
tors. Each node in the circuit must have a dc path to ground. Every node must have at
least two connections except for transmission line nodes (to permit unterminated transmis-
sion lines) and MOSPET substrate nodes (which have two internal connections anyway).

S. TITLE CARtD, COMMENT CARDS AND .END CARD

UW/NW VLSI Release 2.1 -4- 10/ V83

,,',,~~.. ,-'... .. ".'.".. -.. ,.............. .. .-...-.... . .. /-".'.....".....,... -............. .--



UW/NW VLSI Consortium SPICE User's Guide

5.1. Title Card

Examples:

POWER AMPLIFIER CIRCUIT
TEST OF CAM CELL

This card must be the first card in the input deck. Its contents are printed verbatim
as the heading for each section of output.

5.2. .END Card

Examples:

.END

This card must always be the last card in the input deck. Note that the period is an
integral part of the name.

5.3. Comment Card

General Form:

* <any comment>

Examples:

* RF=IK GAIN SHOULD BE 100
* MAY THE FORCE BE WITH MY CIRCUIT

The asterisk in the first column indicates that this card is a comment card. Comment
cards may be placed anywhere in the circuit description.

6. ELEMENT CARDS

6.1. Resisto

General form:

RXXXXXXX NI N2 VALUE < TC=TC1< ,TC2> >

Example*:

RI 12 I00
RCI 12 17 1K TC=0.001,0.01.

NI and N2 are the two element nodes. VALUE is the resistance (in ohms) and may
be positive or negative but not zero. TCI and TC2 are the (optional) temperature
coefficients; if not specified, zero is assumed for both. The value of the resistor as a fune-
tion of temperature is given by:

. - value (TEMP) =value (TNOM) [1 + TC 1 (TEMP - TNOM) + TC 2 (TEMP - TNOM) 2 )

UW/NW VLSI Release 2.1 . 5- 10/183

. . . .. . . . .



UW/NW VLSI Consortium SPICE User's Guide

General form:~6.2. Capacitors 8rid inductors ..'

CXXIXXXX N+ N- VALUE < [C=iNCOND>

LYYYYYYY N+ N- VALUE < [C=INCOND>

Examples:

CBYP1391 UF '
COSC 17 23 IOU IC=3V
LLINK 4269 IU
[SHUNT 23 51 1OU IC=L5.7MA

N+ and N- are the positive and negative element nodes, respectively. VALUE is
-- the capacitance in Farads or the inductance in Henries.

For the capacitor, the (optional) initial condition is the initial (time-zero) value of
capacitor voltage (in Volts). For the inductor, the (optional) initial condition is the initial
(time-zero) value of inductor current (in Amps) that flows from N+, through the inductor,
to N-. Note that the initial conditions (if any) apply 'only' if the UIC option is specified on
the .TRAN card.

Nonlinear capacitors and inductors can be described.

General form

CXXXXXXX N+ N- POLY CO Cl C2 ... < IC=INCOND>
LYYYYYYY N+ N- POLY LO L1 L2 ... < IC-INCOND>

CO CI C2 ..4and LO LI L2 ...) are the coefficients of a polynomial describing the element
value. The capacitance is expressed as a function of the voltage across the element while
the inductance is a function of the current through the inductor. The value is computed as

value =CO+CI-V +C2.V 2 +...

value = L0 + L 1- + L 2-12 +...

where V is the voltage across the capacitor and I the current flowing in the inductor.

63. Coupled (Mutual) Inductors

General form:

KXXXXXXX LYYYYYYY LZZZZZZZ VALUE

Examples:

K43 LAA LD 0.9
KXFRMR LI L2 0.87

LYYYYYYY and LZZZZZZZ are the names of the two coupled inductors, and
VALUE is the coefficient of coupling, K, which must be greater than 0 and less than or
equal to 1. Using the 'dot' convention, place a 'dot' on the first node of each inductor.

V R6

UW/NW VLSI Release 2.1 - 6 - 10/1183 v



UW/NW VLSI Consortium SPICE User's Guide

6.4. Transmission Lines (Lossle.)

General form:

TXXXXXXX N1 N2 N3 N4 ZO=VALUE < TD=VALUE> < F-FREQ < NL-NR.UN> >
+ < IC-VIlI,V2,12>

Examples:

TI 10 2 0 Z0=S0 TD=IONS

N1 and N2 are the nodes at port 1; N3 and N4 are the nodes at port 2. ZO is the
characteristic impedance. The length of the line may be expressed in either of two forms.
The transmission delay, TD, may be specified directly (as TD=I0ns, for example). Alterna-
tively, a frequency F may be given, together with NL, the normalized electrical length of
the transmission line with respect to the wavelength in the line at the frequency F. If a
frequency is specified but NL is omitted, 0.25 is assumed (that is, the frequency is assumed to
be the quarter-wave frequency). Note that although both forms for expressing the line
length are indicated as optional, one of the two must be speci fled.

Note that this element models only one propagating mode. If all four nodes are distinct
in the actual circuit, then two modes may be excited. To simulate such a situation, two
transmission line elements are required. (see the example in Appendix A for further

"* clarification.)

The (optional) initial condition specification consists of the voltage and current at
each of the transmission line ports. Note that the initial conditions (if any) apply 'only' if the
UIC option is specified on the .TRAN card.

One should be aware that SPICE will use a transient time step which does not
exceed /2 the minimum transmission line delay. Therefore very short transmission lines
(compared with the analysis time frame) will cause long run times.

6.5. Linear Dependent Sources

SPICE allows circuits to contain linear dependent sources characterized by any of the
four equations

i =g-v v =elv i =f .i v =hi

where g, e, f, and h are constants representing transconductance, voltage gain, current gain,
and transresistance, respectively. Note: a more complete description of dependent sources as
imple mented in SPICE is given in Appendix B.

6.6. LInear Voltage-Controlled Current Sources

General form:

GXXXXXX N+ N- NC+ NC- VALUE

Examples:

GI2 0 S 0.1MMHO

.... . N+ and N- are the positive and negative nodes, respectively. Current flow is from the
positive node, through the source, to the negative node. NC+ and NC- are the positive and
negative controlling nodes, respectively. VALUE is the transconductance (in mhos).

UW/NW VLSI Release 2.1 -7. 10/1/83



UWINW VLSI Consortium SPICE User's Guide

6.7. Linear Voltage-Coutrolled Voltage Sources

General torin:

EXXXXXXX N+ N- MC+ NCO VALUE

Example.:

El 2 3 14 1 2.0

N+ is the positive node, and N- is the negative node. NC4- and NC- are the positive
and negative controlling nodes, respectively. VALUE is the voltage gain.

6.8. Linear Current-Cmtrolled Current Sonre

* General form:

FIXXXI N+ N- VNAM VALUE

Examnples:

Fl 1353 VSENS 5

N+ and N- are the positive and negative nodes, respectively. Current flow is from the
positive node, through the source, to the negative node. VNAM is the name of a voltage
source through which the controlling current flows. The direction of positive controlling
current flow is from the positive node, through the source, to the negative node of VNAM.
VALUE is the current gain.

6.9. Llnear Curreat-Controlied Voltage Sources

General form:

HIXXXI N+ N- VNAM VALUE

Examiples:

HX 5 17 VZ 6.5K

N+ and N- are the positive and negative nodes, respectively. VNAM is the name of a
voltage source through which the controlling current flows. The direction of positive con-
trolling current flow is from the positive node, through the source, to the negative node of
VNAM. VALUE is the transresistance (in ohms).

3 6.16. Independent Senses

General form:

VXXXI N+ N- «DC> DC/TRAN VALUE> < AC < ACHAG < ACPHASE>>
IY YY T N+ N. <«<DC> DC/TRAN VALUE> < AC < ACMAG < ACPHASE > >,

VCC n0 DC 6

*UW/NW VLSI Release 2.1 -8. 10/1/83



UW/NW VLSI Consortium SPICE User's Guide

K VIN 13 2 0.001 AC 1 SIN(0 1 IMEG)
ISRC 23 21 AC 0.333 45.0 SFFM(0 1 10K 5 1K)
VIMAS 1 9

N+ and N- are the positive and negative nodes, respectively. Note that voltage sources
need not be grounded. Positive current is assumed to flow from the positive node, through
the source, to the negative node. A current source of positive value, will force current to
flow out of the N+ node, through the source, and into the N- node. Voltage sources, in addi-
tion to being used for circuit excitation, are the 'ammeters' for SPICE, that is, zero valued
voltage sources may be inserted into the circuit for the purpose of measuring current. They
will, of course, have no effect on circuit operation since they represent short-circuits.

DCITRAN is the dc and transient analysis value of the source. If the source value
is zero both for dc and transient analyses, this value may be omitted. If the source value is
time-invariant (eg., a power supply), then the value may optionally be preceded by the letters
DC.

ACMAG is the ac magnitude and ACPHASE is the ac phase. The source is set to
this value in the ac analysis. If ACMAG is omitted following the keyword AC, a value of
unity is assumed. If ACPHASE is omitted, a value of zero is assumed. If the source is not
an ac small-signal input, the keyword AC and the ac values are omitted.

Any independent source can be assigned a time-dependent value for transient
analysis. If a source is assigned a time- dependent value, the time-zero value is used for dc
analysis. There are five independent source functions: pulse, exponential, sinusoidal, piece-
wise linear, and single-frequency FM. If parameters other than source values are omitted
or set to zero, the default values shown will be assumed. (TSTEP is the printing increment
and TSTOP is the final time (see the .TRAN card for explanation)).

quo, 1. Pulse PULSE(VI V2 TD TR TF PW PER)

Examples:

VIN 3 0 PULSE(-1 1 2NS 2NS 2NS 5ONS 10ONS)

parameter default units

V1 (initial value) Volts or Amps
V2 (pulsed value) Volts or Amps
TD (delay time) 0.0 seconds
TR (rise time) TSTEP seconds
TF (fall time) TSTEP seconds
FW (pulse width) TSTOP seconds
PER(period) TSTOP seconds

A single pulse so specified is described by the following table:

time value

0 VI
TD VI
TD+TR V2
TD+TR+PW V2
TD+TR+PW+TF VI
TSTOP VI

UW/NW VLSI Release 2.1 - 9. 10/1/83



UWINW VLSI Consortium SPICE User's Guide

Intermediate points are determined by linear interpolation.

2. Sinusoidal SIN(VO VA FREQ TD THETA)

Examples:

VIN 3 0 SIN(O 1 1OOMEG INS 1EIO)

parameter default value units

VO (offset) Volts or Amps
VA (amplitude) Volts or Amps
FREQ (frequency) 1/TSTOP
TD (delay) 0.0
THETA (damping factor) 0.0

The shape of the waveform is described by the following table:

time value

0 to TD VO
TD to TSTOP V0+VAe(-(time- TD)@)sin(2vFREQ(time+TD))

3. Exponential EXP(V1 V2 TD1 TAUl TD2 TAU2)

Examples:

VIN 3 0 EXP(-4 -1 2NS 3ONS 6ONS 4ONS)

parameters default values units

V1 (initial value) Volts or Amps
V2 (pulsed value) Volts or Amps
TDI (rise delay time) 0.0
TAU1 (rise time constant) TSTEP
TD2 (fall delay time) TDI+TSTEP
TAU2 (fall time constant) TSTEP

The shape of the waveform is described by the following table:

time value

0 to TDI Vl
TD1 to TD2 V I + (V2 -V I) I- e( - (time -TD 1)/TAU 1)1

- TD2toTSTOP V1+(V2-V1)[1 -e( -(time-TDI)iTAU)+(V1-V 2 )[i-e(-(time-TD2)/TAU2)]

4. Piece-Wise Linear PWL(Tl VI < T2 V2 T3 V3 T4 V4 ...>)

Example:

UW/NW VLSI Release 2.1 -10- 10/1183

..-'



UW/NW VLSI Consortium SPICE User's Guide

VCLOCK 7 5 PWL(0 -7 IONS -7 lINS -3 17NS -3 18NS -7 SONS -7)

Each pair of values (Ti, Vi) specifies that the value of the source is Vi (in Volts or
Amps) at time-Ti. The value of the source at intermediate values of time is determined by
using linear interpolation on the input values.

5. Single-Frequency FM SFFM(VO VA FC MDI FS)

Examples:

V1 12 0 SFFM(O 1M 20K 5 1K)

parameters default values units

VO (offset) Volts or Amps
VA (amplitude) Volts or Amps
FC (carrier frequency) 1/TSTOP
MDI (modulation index)
FS (signal frequency) IJTSTOP

The shape of the waveform is described by the following equation:

value + VO + VAsin ((2w .FC.time) + MDIsin (2w -FS-time))

7. SEMICONDUCTOR DEVICES

The elements that have been described to this point typically require only a few
parameter values to specify completely the electrical characteristics of the element. How-
ever, the models for the four semiconductor devices that are included in the SPICE pro-
gram require many parameter values. Moreover, many devices in a circuit often are defined
by the same set of device model parameters. For these reasons, a set of device model
parameters is defined on a separate MODEL card and assigned a unique model name. The
device element cards in SPICE then reference the model name. This scheme alleviates the
need to specify all of the model parameters on each device element card.

Each device element card contains the device name, the nodes to which the device is
connected, and the device model name. In addition, other optional parameters may be
specified for each device: geometric factors and an initial condition.

The area factor used on the diode, BJT and JFET device card determines the number
of equivalent parallel devices of a specified model. The affected parameters are marked with
an asterisk under the heading 'area' in the model descriptions below. Several geometric
factors associated with the channel and the drain and source diffusions can be specified on
the MOSFET device card.

Two different forms of initial conditions may be specified for devices. The first form
is included to improve the dc convergence for circuits that contain more than one stable
state. If a device is specified OFF, the dc operating point is deter mined with the terminal
voltages for that device set to zero. After convergence is obtained, the program continues
to iterate to obtain the exact value for the terminal voltages. If a circuit has more than
one dc stable state, the OFF option can be used to force the solution to correspond to a

* . desired state. If a device is specified OFF when in reality the device is conducting, the pro-
gram will still obtain the correct solution (assuming the solutions converge) but more itera-
tions will be required since the program must independently converge to two separate solu-
tions. The .NODESET card serves a similar purpose as the OFF option. The .NODESET

UW/NW VLSI Release 2.1 11- 10/1183



UW/NW VLSI Consortium SPICE User's Guide

4."p

option is easier to apply and is the preferred means to aid convergence.

The second form of initial conditions are specified for use with the transient analysis.
These are true 'initial conditions' as opposed to the convergence aids above. See the descrip-
tion of the IC card and the TRAN card for a detailed explanation of initial conditions.

7.1. Junction Diodes

"" General ferm:

DXXXXXXX N+ N- MNAME <AREA> <OFF> < IC=VD>

EIamples:

DBRIDGE 2 10 DIODEl
DCLMP 3 7 DMOD 3.0 IC=0.2

N+ and N- are the positive and negative nodes, respectively. MNAME is the model
name, AREA is the area factor, and off indicates an (optional) starting condition on the
device for dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The
(optional) initial condition specification using IC=VD is intended for use with the UIC
option on the .TRAN card, when a transient analysis is desired starting from other than the
quiescent operating point.

7.2. Dipolar Junction Translators (BJT's)

General form:

QXXXXXXX NC NO NE < NS> MNAME < AREA> < OFF> < IC=VBEVCE>

Examples:

Q23 10 24 13 QMOD IC=0.6,5.0
QSOA 1126 4 20 MODI

NC, NB, and NE are the collector, base, and emitter nodes, respectively. NS is the
(optional) substrate node. If unspecified, ground is used. MNAME is the model name,
AREA is the area factor, and OFF indicates an (optional) initial condition on the device for
the dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The (optional)
initial condition specification using IC=VBE,VCE is intended for use with the UIC option
on the .TRAN card, when a transient analysis is desired starting from other than the quies-
cent operating point. See the IC card description for a better way to set transient initial
conditions.

7.3. Junction Field-Effect Transistors (JFET's)

General (rm:

JXXXXXXX ND NG NS MNAME < AREA> < OFF> < IC-VDS,VGS>

Examples:

J 7 23 JMI OFF

UW/NW VLSI Release 2.1 - 12- 10/L'83

%4



UWINW VLSI Consortium SPICE User's Guide

ND, NG, and NS are the drain, gate, and source nodes, respectively. MNAME is
the model name, AREA is the area factor, and OFF indicates an (optional) initial condition
on the device for dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The
(optional) initial condition specification, using IC=VDSVGS is intended for use with the
UIC option on the .TRAN card, when a transient analysis is desired starting from other
than the quiescent operating point (see the IC card for a better way to set initial conditions).

7.4. MOSFETs

General form:

MXXXXXXX RD NG NS NB MNAME <L=VAL> <W=VAL> <AD=VAL>
<AS=VAL>

+ < PD=VAL> < PS=VAL> < NRD=VAL> < NRS=VAL> < OFF>
< IC=VDS,VGS,VBS>

Examples:

M1 24 2 0 20 TYPEI
M31 2 17 6 10 MODM L=5U W=2U
M31 2 16 6 10 MODM 5U 2U
M1 2 9 3 0 MODI L=IOU W=SU AD=IOOP AS=IOOP PD=40U PS=40U
M12930MODI IOU SU 2P2P

ND, NG, NS, and NB are the drain, gate, source, and bulk (substrate) nodes, respec-
tively. MNAME is the model name. L and W are the channel length and width, in meters.
AD and AS are the areas of the drain and source diffusions, in sq-meters. Note that the
suffix U specifies microns (1E-6 m) and P sq-microns (IE-12 sq-m). If any of L, W,
AD, or AS are not specified, default values are used. The user may specify the values to be
used for these default parameters on the .OPTIONS card. The use of defaults simplifies input
deck preparation, as well as the editing required if device geometries are to be changed.
PD and PS are the perimeters of the drain and source junctions, in meters. NRD and
NRS designate the equivalent number of squares of the drain and source diffusions; these
values multiply the sheet resistance RSH specified on the MODEL card for an accurate
representation of the parasitic series drain and source resistance of each transistor. PD and
PS default to 0.0 while NRD and NRS to 1.0. OFF indicates an (optional) initial condition on
the device for dc analysis. The (optional) initial condition specification using
IC=VDSVGSVBS is intended for use with the UIC option on the .TRAN card, when a
transient analysis is desired starting from other than the quiescent operating point. See the
IC card for a better and more convenient way to specify transient initial conditions.

7.. MODEL Card

General torm:

MODEL MNAME TYPE(PNAME1=PVAL1 PNAME2=PVAL2 ...)

Examples:

MODEL MODI NPN BF=SO IS=IE-13 VBF=0

The MODEL card specifies a set of model parameters that will be used by one or
* more devices. MNAME is the model name, and type is one of the following seven types:

type description

UW/NW VLSI Release 2.1 . 13 10/1183

'-.5 " .. S



UW/NW VLSI Consortium SPICE User's Guide

NPN NPN BJT model
PNP PNP BJT model
D diode model
NJF N-channel JFET model
PJF P-channel JFET model
NMOS N-channel MOSFET model
PMOS P-channel MOSFET model

Parameter values are defined by appending the parameter name, as given below for
each model type, followed by an equal sign and the parameter value. Model parameters
that are not given a value are assigned the default values given below for each model
type.

7.6. Diode Model

The dc characteristics of the diode are determined by the parameters IS and N. An
ohmic resistance, RS, is included. Charge storage effects are modeled by a transit time, TT,
and a nonlinear depletion layer capacitance which is determined by the parameters CJO, VJ,
and M. The temperature dependence of the saturation current is defined by the parame-
ters EG, the energy and XTI, the saturation current temperature exponent. Reverse break.
down is modeled by an exponential increase in the reverse diode current and is determined
by the parameters BV and IBV (both of which are positive numbers).

name parameter units default example area

1 IS saturation current A 1.OE-14 1.OE-14
2 RS ohmic resistance Ohm 0 10
3 N emission coefficient 1 1.0
4 TT transit-time sec 0 O.1Ns
5 CJO zero-bias junction capacitance F 0 2PF
6 VJ junction potential V 1 0.6
7 M grading coefficient 0.5 0.5
8 EG activation energy eV 1.11 1.11 Si

0.69 Sbd
0.67 Ge

9 XTI saturation-current temp. exp 3.0 3.0 in
2.0 Sbd

10 KF flicker noise coefficient 0
11 AF flicker noise exponent 1
12 FC coefficient for forward-bias 0.5

depletion capacitance formula
13 BV reverse breakdown voltage V infinite 40.0
14 IBV current at breakdown voltage A 1.OE-3

7.7. BJT Models (both NPN wad PNP)
The bipolar junction transistor model in SPICE is an adaptation of the integral charge

control model of Gummel and Poon. This modified Gummel-Poon model extends the origi-
nal model to include several effects at high bias levels. The model will automatically sim-
plify to the simpler Ebers-Moll model when certain parameters are not specified. The
parameter names used in the modified Gummel-Poon model have been chosen to be more
easily understood by the program user, and to reflect better both physical and circuit design
thinking.

The dc model is defined by the parameters IS, BF, NF, ISE, IKF, and NE which deter-
mine the forward current gain characteristics, IS, BR, NR, ISC, IKR, and NC which deter-
mine the reverse current gain characteristics, and VAF and VAR which determine the

UW/NW VLSI Release 2.1 - 14- 10/1183

------... --- * - .,,...,,:.,,.. -.- .. ...------ ------- - -, , -- - -



UW/NW VLSI Consortium SPICE User's Guide

output conductance for forward and reverse regions. Three ohmic resistances RB, RC, and
RE are included, where RB can be high current dependent. Base charge storage is modeled
by forward and reverse transit times, TF and TR, the forward transit time TF being bias
dependent if desired, and nonlinear depletion layer capacitances which are determined by
C.JE, VJE, and MJE for the B-E junction , CJC, VJC, and MJC for the B-C junction and
CJS, VJS, and MIS for the C-S (Collector-Substrate) junction. The temperature depen-
dence of the saturation current, IS, is determined by the energy-gap, EG, and the saturation
current temperature exponent, XTI. Additionally base current temperature dependence is
modeled by the beta temperature exponent XTB in the new model.

The BIT parameters used in the modified Gummel-Poon model are listed below. The
parameter names used in earlier versions of SPICE2 are still accepted.

Modified Gummel-Poon BJT Parameters

name parameter units default example area

1 Is transport saturation current A 1DE-16 1OE-15
2 BF ideal maximum forward beta - 100 100
3 NF forward current emission coefficient 1.0 1

* 4 VAF forward Early voltage V infinite 200
5 IKF corner for forward beta

high current roll-off A infinite 0.01
6 ISE B-E leakage saturation current A 0 I.OE-13
7 NE B-E leakage emission coefficient 1.5 2
8 BR ideal maximum reverse beta 1 0.1
9 NR reverse current emission coefficient 1 1
10 VAR reverse Early voltage V infinite 200
11 IKR corner for reverse beta

high current roll-off A infinite 0.01
12 ISC B-C leakage saturation current A 0 1OE-13 "
13 NC B-C leakage emission coefficient 2 1.5
14 RB zero bias base resistance Ohms 0 100
15 IRB current where base resistance

falls halfway to its min value A infinite 0.1
16 RBM minimum base resistance

at high currents Ohms RB 10
17 RE emitter resistance Ohms 0 1
18 RC collector resistance Ohms 0 10
19 CJE B-E zero-bias depletion capacitance F 0 2PF
20 VE B-E built-in potential V 0.75 0.6
21 MJE B-E junction exponential factor 0.33 033
22 TF ideal forward transit time sec 0 0.1Ns
23 XTF coefficient for bias dependence of TF - 0
24 VTF voltage describing VBC

dependence of TF V infinite
25 ITF high-current parameter

for effect on TF A 0
26 PTF excess phase at freq = 1.0/(TF.2PI) Hz deg 0
27 CJC B-C zero-bias depletion capacitance F 0 2PF
28 VJC B-C built-in potential V 0.75 0.5
29 MIC B-C junction exponential factor 033 0.5
30 XCJC fraction of B-C depletion capacitance

connected to internal base node 1
31 TR ideal reverse transit time sec 0 IONs
32 CJS zero-bias collector-substrate

."/NW VLSI Release 2.1 - 15 - 10/1/83



LSI Consortium SPICE User's Guide

capacitance F 0 2PF
VJS substrate junction built-in potential V 0.75
MIS substrate junction exponential factor 0 0.3
XTB forward and reverse beta

temperature exponent 0
36 EG energy gap for temperature

effect on IS eV 1.11
37 XTI temperature exponent for effect on IS 3
38 KF flicker-noise coefficient 0
39 AF flicker-noise exponent 1
40 FC coefficient for forward-bias

depletion capacitance formula 0.5

7.8. JFET Models (both N and P Channel)
The NET model is derived from the FET model of Shichman and Hodges. The de

characteristics are defined by the parameters VTO and BETA, which determine the variation
of drain current with gate voltage, LAMBDA, which determines the output conductance,
and IS, the saturation current of the two gate junctions. Two ohmic resistances, RD and
RS, are included. Charge storage is modeled by nonlinear depletion layer capacitances for
both gate junctions which vary as the -/2 power of junction voltage and are defined by the
parameters CGS, CGD, and PB.

name parameter units default example area

1 VTO threshold voltage V -20 -2.0
2 BETA transconductance parameter A/V 2  1.OE-4 1.OE-3
3 LAMBDA channel length modulation

parameter 1V 0 IOE-4
4 RD drain ohmic resistance Ohm 0 100
5 RS source ohmic resistance Ohm 0 100
6 CGS zero-bias G-S junction capacitance F 0 5PPF
7 CD zero-bias G-D junction capacitance F 0 IF

8 PB gate junction potential V I 0A
9 IS gate junction saturation current A 1.OE-14 1.DE-14
10 KF flicker noise coefficient - 0
11 AF flicker noise exponent - 1
12 FC coefficient for forward-bias 0.5

depletion capacitance formula

7.9. MOSFET Models (both N and P channel)

SPICE provides three MOSFET device models which differ in the formulation of
the I-V characteristic. The variable LEVEL specifies the model to be used:

LEVEL=I -> Shichman-Hodges
LEVEL-2 -> MOS2 (as described in 11D
LEVEL-' -> MOS3, a semi-empirical model(see RDn

The dc characteristics of the MOSFET are defined by the device parameters VTO,
KP, LAMBDA, PHI and GAMMA. These parameters are computed by SPICE if process
parameters (NSUB, TOX, ...) are given, but user-specified values always override. VTO is

positive (negative) for enhancement mode and negative (positive) for depletion mode N-

I TW/NW VLSI Release 2.1 - 16 - 10/I/83



UW/NW VLSI Consortium SPICE Users Guide

channel (P-channel) devices. Charge storage is modeled by three constant capacitors, CGSO,
CGDO, and CGBO which represent overlap capacitances, by the nonlinear thin-oxide capaci-
tance which is distributed among the gate, source, drain, and bulk regions, and by the non-
linear depletion-layer capacitances for both substrate junctions divided into bottom and peri-
phery, which vary as the MI and MJSW power of junction voltage respecively, and are deter-
mined by the parameters CBD, CBS, CJ, CJSW, MJ, MJSW and PB. There are two built-
in models of the charge storage effects associated with the thin-oxide. The default is the

* -. piecewise linear voltage-dependent capacitance model proposed by Meyer. The second choice
- is the charge-controlled capacitance model of Ward and Dutton [1]. The XQC model param-

eter acts as a flag and a coefficient at the same time. As the former it causes the program to
use Meyer's model whenever larger than 0.5 or not specified, and the charge-controlled model

'." when between 0 and 0.5. In the latter case its value defines the share of the channel charge
* associated with the drain terminal in the saturation region. The thin-oxide charge storage

effects are treated slightly different for the LEVEL=1 model. These voltage- dependent
capacitances are included only if TOX is specified in the input description and they are
represented using Meyer's formulation.

There is some overlap among the parameters describing the junctions, eg. the reverse
current can be input either as IS (in A) or as JS (in A/m 2 ). Whereas the first is an absolute
value the second is multiplied by AD and AS to give the reverse current of th drain and
source junctions respectively. This methodology has been chosen since there is no sense in
relating always junction characteristics with AD and AS entered on the device card; the
areas can be defaulted. The same idea applies also to the zero-bias junction capacitances
CBD and CBS (in F) on one hand, and CJ (in F/m 2 ) on the other. The parasitic drain and
source series resistance can be expressed as either RD and RS (in ohms) or RSH (in
ohms/sq.), the latter being multiplied by the number of squares NRD and NRS input on the
device card.

name parameter units default example

1 LEVEL model index - 1
2 VTO zero-bias threshold voltage V 0.0 1.0

3 KP transconductance parameter A/V 2  2.0E-5 3.1E-5
4 GAMMA bulk threshold parameter V 0- 5  0.0 037
5 PHI surface potential V 0.6 0.65
6 LAM3DA channel-length modulation

(MOSI and MOS2 only) 1/V 0.0 0.02
7 RD drain ohmic resistance Ohm 0.0 1.0
8 RS source ohmic resistance Ohm 0.0 1.0
9 CBD zero-bias B-D junction capacitance F 0.0 20FF
10 CBS zero-bias B-S junction capacitance F 0.0 20FF
11 is bulk junction saturation current A 1.OE-14 LOE-15

. 12 PB bulk junction potential V 0.8 0.87
13 CGSO gate-source overlap capacitance

per meter channel width F/m 0.0 4.OE-11
. 14 CGDO gate-drain overlap capacitance

per meter channel width F/m 0.0 4.0E-11
15 CGBO gate-bulk overlap capacitance

per meter channel length F/m 0.0 2.0E-10
16 RSH drain and source diffusion

sheet resisitance Ohm/sq. 0.0 10.0

(1 A. Vtadimirucu and S. Liu, Othe Simulation of MOS Integrated Circuits Using SPICEr. ERL Memo
No. ERL MW,Electronics Resarcb Laboratory, Umversity of California. Berkeley. Oct. 1980.

UWINW VLSI Release 2.1 - 17 - 10/1/83

0,.b



UWINW VLSI Consortium SPICE User's Guide

17 CJ zero-bias bulk junction bottom cap. Fr 00 2E
per sq-meter of junction area F/m 2  0. 2.E-4

18 Mi bulk junction bottom grading coef. 0.5 0.5
19 CJSW zero-bias bulk junction sidewall cap.

per meter of junction perimeter F/n 0.0 1.OE-9
20 MJSW bulk junction sidewall grading coef. 0.33
21 JS bulk junction saturation current

per sq-meter of junction area A/m 2  1.OE-8
22 TOX oxide thickness meter 1.OE-7 1.OE-7
23 NSUB substrate doping 1/cm3  0.0 4E15
24 NSS surface state density 1/cm2  0.0 10E10
25 NFS fast surface state density I/cm2  0.0 l.OElO
26 TPG type of gate material: . 1.0

+1 opp. to substrate
-1 same as substrate
0 Al gate

27 XJ metallurgical junction depth meter 0.0 1U
28 LD lateral diffusion meter 0.0 OU
29 UO surface mobility cm2 /V -s 600 700
30 UCRIT critical field for mobility

degradation (MOS2 only) V/cm 1.0E4 1.0E4
31 UEXP critical field exponent in

mobility degradation (MOS2 only) 0.0 0.1
32 UTRA transverse field coeff (mobility)

(deleted for MOS2) 0.0 0.3
33 VMAX maximum drift velocity of carriers m/s 0.0 S.E4
34 NEFF total channel charge (fixed and

mobile) coefficient (MOS2 only) 1.0 5.0
35 XQC thin-oxide capacitance model flag

and coefficient of channel charge
share attributed to drain (0-0.5) 1.0 0.4

36 KF flicker noise coefficient 0.0 1.0E-26
37 AF flicker noise exponent 1.0 1.2
38 FC coefficient for forward-bias

depletion capacitance formula - 0.5
39 DELTA width effect on threshold voltage

(MOS2 and MOS3) 0.0 1.0
40 THETA mobility modulation (MOS3 only) 1/V 0.0 0.1
41 ETA static feedback (MOS3 only) 0.0 1.0
42 KAPPA saturation field factor (MOS3 only) 0.2 0.5

8. SUBCIRCUITS

A subcircuit that consists of SPICE elements can be defined and referenced in a
fashion similar to device models. The sub- circuit is defined in the input deck by a grouping

.* of element cards; the program then automatically inserts the group of elements wherever
the subcircuit is referenced. There is no limit on the size or complexity of subcircuits,
and subircuits may contain other subcircuits. An example of subcircuit usage is given in
Appendix A.

8.1. .SUBCKT Card

General torm:

SUBCKT ubmam NI < N2 N3 ... >

?"V!NW VLSI Release 2.1 - 18- 10/1/83

' "" '" '""'""'"""" """"" ' '' i i " . .. "" . .. . . . . . . . . .'...". .-I "" '' " " """"" "". . .. . . . .h. ."" . . . . . . . .." d atl
A s ' " l ' t ' h m ' ' d

""" " " " ' ' " * " ' ' ' "" ". .. :



UW/NW VLSI Consortium SPICE User's Guide

Examples:

SUBCKT OPAMP 12 3 4

A circuit definition is begun with a SUBCKT card. SUBNAM is the subcircuit name,
and Ni, N2, ... are the external nodes, which cannot be zero. The group of element cards
which immediately follow the SUBCKT card define the subcircuit. The last card in a sub-
circuit definition is the .ENDS card (see below). Control cards may not appear within a
vsubcircuit definition; however, subcircuit definitions may contain anything else, including
other subcircuit definitions, device models, and subcircuit calls (see below). Note that any
device models or subcircuit definitions included as part of a subcircuit definition are strictly
local (i.e., such models and definitions are not known outside the subcircuit definition).
Also, any element nodes not included on the SUBCKT card are strictly local, with the
exception of 0 (ground) which is always global.

8.2. ENDS Card

General form:

.ENDS < SUBNAM>

Examples:

.ENDS OPAMP

This card must be the last one for any subeircuit definition. The subcircuit name, if
included, indicates which subcircuit definition is being terminated; if omitted, all subcircuits
being defined are terminated. The name is needed only when nested subcircuit definitions
are being made.

3.3. Subcfrcult Calls

General form:

XYYYYYYY NI < N2 N3 ...> SUBNAM

Examples:

,X1 2 4 17 3 1 MULTI

Subcircuits are used in SPICE by specifying pseudo-elements beginning with the letter
X, followed by the circuit nodes to be used in expanding the subcircuit.

9. CONTROL CARDSV
9.1. .TEMP Card

General form:

.TEMP TI < T2 < T3 ... > >

Examples:

.TEMP -55.0 25.0 12S.0

UW/NW VLSI Rclease 2.1 - 19- 10/1/83



J~AD-AI58 699 VLSI (VERY LARGE SCALE INTEGRATION) DESIGN TOOLS 5/5
REFERENCE MARNUAL RELEASE 30(U) WASHINGTON UNIV SEATTLE
DEPT OF COMPUTER SCIENCE AUG 85 TR-85-e7-03

UNCLASIID DA93-85-K-82 F/G 9/5 LAmhhhmj
7AE~h E E h~ E



1j,

111-4 M6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF SIANDARDS 163 A



UW/NW VLSI Consortium SPICE User's Guide

This card specifies the temperatures at which the circuit is to be simulated. TI, T2,
Are the different temperatures, in degrees C. Temperatures less than -223.0 deg C are
ignored. Model data are specified at TNOM degrees (see the .OPTIONS card for TNOM); if
the TEMP card is omitted, the simulation will also be performed at a temperature equal to
TNOM.

9.2. WIDTH Card

General form:

.WIDTH IN=COLNUM OUT=OLNUM

Exanmples:

.WIDTH IN=72 OUT=133

COLNUM is the last column read from each line of input; the setting takes effect with
the next line read. The default value for COLNUM is 80. The out parameter specifies the
output print width. Permissible values for the output print width are 80 and 133.

9.3. .OPTIONS Card

General f(rm:

.OPTIONS OPTI OPT2 ... (or OPT-OPTVAL ...)

Emaples:

.OPTIONS ACCT LIST NODE

This card allows the user to reset program control and user options for specific simula-
tion purposes. Any combination of the following options may be included, in any order. 'x'
(below) represents some positive number.
option effect

ACCT causes accounting and run time statistics to be printed

LIST causes the summary listing of the input data to be printed

NOMOD suppresses the printout of the model parameters.

NOPAGE suppresses page ejects

NODE causes the printing of the node table.

OPTS causes the option values to be printed.

GMIN-x sets the value of GMIN, the minimum conductance allowed by the program.
The default value is 1.E-12.

RELTOL-x resets the relative error tolerance of the program. The default value is
0.001 (0.1 percent).

ABSTOL-x resets the absolute current error tolerance of the program. The default
value is 1 picoamp.

VNTOL-x resets the absolute voltage error tolerance of the program. The default
value is 1 microvolt.

TRTOL=x resets the transient error tolerance. The default value is 7.0. This parame-
ter is an estimate ok the factor by which SPICE overestimates the actual

UW/NW VLSI Release 2.1 -20- 10/1/83

'-..'. • .''.." '.''.- .'.'.-'-'.'...-' ".,.. ° . .... ', .... ? ,'L.. . . . .-.- . - " %'.'-,'%



.

UW/NW VLSI Consortium SPICE User's Guide

r - truncation error. IP "CHGTOL=" 17 resets the charge tolerance of the
F program. The default value is 1.OE-14.

PIVTOL--x resets the absolute minimum value for a matrix entry to be accepted as a
pivot. The default value is 1.0-13.

PIVREL-x resets the relative ratio between the largest column entry and an acceptable
pivot value. The default value is 1.OE-3. In the numerical pivoting algo.
rithm the allowed minimum pivot value is determined by
EPSREL = AMAX I (PIVREL.MAXVAL ,PIVTOL) where MAXVAL is
the maximum element in the column where a pivot is sought (partial pivot-
ins).

NUMDGT-z is the number of significant digits printed for output variable values. X
must satisfy the relation 0 < x < 8. The default value is 4. Note: this
option is independent of the error tolerance used by SPICE (i.e., if the
values of options RELTOL, ABSTOL, etc., are not changed then one may
be printing numerical 'noise' for NUMDGT > 4.

TNOM-x resets the nominal temperature. The default value is 27 deg C (300 deg K).

ITLI-x resets the dc iteration limit. The default is 100.
ITL2-x resets the dc transfer curve iteration limit. The default is 50.
ITL3--x resets the lower transient analysis iteration limit. The default value is 4.
ITL4-x resets the transient analysis timepoint iteration limit. The default is 10.
ITLS=x resets the transient analysis total iteration limit. The default is 5000. Set

ITL.5-0 to omit this test.

ITL6-x resets the dc iteration limit at each step of the source stepping method.
The default is 0 which means not to use this method.

CPTIME=x is the maximum cpu-time in seconds allowed for this job.
LIMTIM=x resets the amount of cpu time reserved by SPICE for generating plots

should a cpu time-limit cause job termination. The default value is 2
(seconds).

LIMPTS=x resets the total number of points that can be printed or plotted in a de, ac,
or transient analysis. The default value is 201.

LVLCOD-x if x is 2 (two), then machine code for the matrix solution will be generated.
Otherwise, no machine code is generated. The default value is 2. Applies
only to CDC computers.

LVLTIM=x is 1 (one), the iteration timestep control is used. if x is 2 (two), the
truncation-error timestep is used. The default value is 2. If method-Gear
and MAXORD> 2 thea LVLTIM is set to 2 by SPICE.

METHOD-name sets the numerical integration method used by SPICE. Possible names are
Gear or trapezoidal. The default is trapezoidal.

MAXORD=x sets the maximum order for the integration method if Gear's variable-order
method is used. X must be between 2 and 6. The default value is 2.

DEFL-x resets the value for MOS channel length; the default is 100.0 micrometer.
DEFW -x resets the value for MOS channel width; the default is 100.0 micrometer.
DEFAD=x resets the value for MOS drain diffusion area; the default is 0.0.
DEFAS-x resets the value for MOS source diffusion area; the default is 0.0.

- -

UW/NW VLSI Release 2.1 - 21 - 101183
4.



UW/NW VLSI Consortium SPICE User's Guide

9A. O.F Card

Geneam form:

.O

The inclusion of this card in an input deck will force SPICE to determine the dc operat-
ing point of the circuit with inductors shorted and capacitors opened. Note: a dc analysis is
automatically performed prior to a transient analysis to determine the transient initial con-
ditions, and prior to an ac small-signal analysis to determine the linearized, small-signal
models for nonlinear devices.

SPICE performs a dc operating point analysis if no other analyses are requested.

9.. .DC Card

General form:

.DC SRCNAM VSTART VSTOP VINCR [SIC2 START2 STOP2 INCR2]

Exampls:

.DC VIN 025 A* O.2
DC VDS 0 1. VGS 0 5 1

.DC VCE 0 10 .2 0 IOU 1U

This card defines the dc transfer curve source and sweep limits. SRCNAM is the
name of an independent voltage or current source. VSTART, VSTOP, and VINCR are the
starting, final, and incrementing values respectively. The first example will cause the value
of the voltage source VIN to be swept from 0.5 Volts to 5.0 Volts in increments of 0.25

*" Volts. A second source (SRC2) may optionally be specified with associated sweep parameters.
In this case, the first source will be swept over its range for each value of the second source.

* This option can be useful for obtaining semiconductor device output characteristics. See
the second example data deck in that section of the guide.

9A. .NODESET Card

Geneal ftrm:

.NODESET V(NODNUM)-VAL V(NODNUM)-VAL...

asimple,:

.NODESET V(U)-45 V(4)=2.23

This card helps the program find the dc or initial transient solution by making a prel-
iminary pam with the specified nodes held to the given voltages. The restriction is then
released and the iteration continues to the true solution. The NODESET card may be neces-
sary for convergence on bistable or astable circuits. In general, this card should not be neces-
Gary.

UW/NW VLSI Release 2.1 - 22- 10/11/83



UW/NW VLSI Consortium SPICE User's Guide

9.7. .IC Card

Genml tam:

IC V(NODNUM)-VAL V(NODNUM)-VAL ...

Eamples:

JC V()-S V(4)=-S V(2)-2.2

This card is for setting transient initial conditions. It has two different interpreta-
tions, depending on whether the UIC parameter is specified on the .TRAN card. Also, one
should not confuse this card with the .NODESET card. The .NODESET card is only to
help dc convergence, and does not affect final bias solution (except for multi-stable circuits).
The two interpretations of this card are as follows:

1. When the UIC parameter is specified on the .TRAN card, then the node voltages
specified on the IC card are used to compute the capacitor, diode, BJT, JMET, and
MOSFET initial conditions. This is equivalent to specifying the IC=... parameter on
each device card, but is much more convenient. The IC=... parameter can still be
specified and will take precedence over the IC values. Since no dc bias (initial tran-
sient) solution is computed before the transient analysis, one should take care to
specify all dc source voltages on the .IC card if they are to be used to compute device
initial conditions.

2. When the UIC parameter is not specified on the .TRAN card, the de bias (initial tran-
sient) solution will be computed before the transient analysis. In this case, the node C
voltages specified on the IC card will be forced to the desired initial values during the
bias solution. During transient analysis, the constraint on these node voltages is
removed.

9. .. F Card

General form:

T OUTVAR INSRC

Examples:

XV V(s,3) VIN
.T I(VLOAD) VIN

This card defines the small signal output and input for the dc small signal analysis.
*" OUTVAR is the small-signal output variable and INSRC is the small-signal input source. If

this card is included, SPICE will compute the dc small signal value of the transfer function .,
(output/input), input resistance, and output resistance. For the first example, SPICE would p
compute the ratio of V(5,3) to VIN, the small-signal input resistance at VIN, and the small-
signal output resistance measured across nodes S and 3.

9.9. JENS Card

Gemeral torm:

S "ENS OVI < OVI ... >

UW/NW VLSI Release 2.1 .23- 10/1/83

",-''-''-' .'- "-" "'. -"---" " '" '.' ." . " " ' '"- -', "- " ; " " " . - - , ' : -- -','2 ,-' ', - - ._ .. .,,,



UW/NW VLSI Consortium SPICE User's Guide

' ~Examples: -

SENS V(9) V(4,3) V(17) I(VCC)

If a SENS card is included in the input deck, SPICE will determine the dc small-
signal sensitivities of each specified output variable with respect to every circuit parameter.
Note: for large circuits, large amounts of output can be generated.

9.10. AC Card

General form:

AC DEC ND FSTART FSTOP
AC OCT NO FSTART FSTOP
AC LIN NP FSART FSTOP

Ezamples:

AC DEC 10 1 10K
AC DEC 10 1K 100MEG
AC LIN 100 1 10HZ

DEC stands for decade variation, and ND is the number of points per decade. OCT
stands for octave variation, and NO is the number of points per octave. LIN stands for
linear variation, and NP is the number of points. FSTART is the starting frequency, and
FSTOP is the final frequency. If this card is included in the deck, SPICE will perform an
ac analysis of the circuit over the specified frequency range. Note that in order for this
analysis to be meaningful, at least one independent source must have been specified with an
ac value.

9.11. .DSTO Card

General form:

.DITO RLOAD < INTER < SKW2 < RFPWR < SPW2> > > >

Examples:

DISTO RL 2 6.96 1.0-3 0.75

This card controls whether SPICE will compute the distortion characteristic of the cir-
cuit in a small-signal mode as a part of the ac small-signal sinusoidal steady-state analysis.
The analysis is performed assuming that one or two signal frequencies are imposed at the
input; let the two frequencies be fl (the nominal analysis frequency) and f2
(-SKW 2-f 1). The progam then computes the following distortion measures:
HD2 - the magnitude of the frequency component 2.f I assuming that f2 is not present.

HD3 - the magnitude of the frequency component 3-f I assuming that f2 is not present.
SIM2 - the magnitude of the frequency component fl + f2.

DIM2 - the magnitude of the frequency component fI - f2.
DIM3 - the magnitude of the frequency component 2.f 1 - f2.

RLOAD is the name of the output load resistor into which all distortion power pro-
ducts are to be computed. INTER is the interval at which the summary printout of the

UW/NW VLSI Release 2.1 - 24 - 10/11/83



UWINW VLSI Consortium SPICE User's Guide

contributions of all nonlinear devices to the total distortion is to be printed. If omitted or
set to zero, no summary printout will be made. REFPWR is the reference power level used
in computing the distortion products; if omitted, a value of I mW (that is, dbm) is used.
SKW2 is the ratio of f2 to fl. If omitted, a value of 0.9 is used (i.e., f2 = 0.9-f I). SPW2 is
the amplitude of f2. If omitted, a value of 1.0 is assumed. he distortion measures HD2,
HD3, SIM2, DIM., and DIM3 may also be be printed and/or plotted (see the description of
the PRINT and .PLOT cards).

9.12. .NOISE Card

General germ:

.NOISE OUTV [NSRC NUMS

Examples:

.NOISE V(S) VIN 10

This card controls the noise analysis of the circuit. The noise analysis is performed in
conjunction with the ac analysis (see AC card). OUTV is an output voltage which defines the
summing point. INSRC is the name of the independent voltage or current source which is
the noise input reference. NUMS is the summary interval. SPICE will compute the
equivalent output noise at the specified output as well as the equivalent input noise at the
specified input. In addition, the contributions of every noise generator in the circuit will be
printed at every NUMS frequency points (the summary interval). If NUMS is zero, no sum-
mary printout will be made.

The output noise and the equivalent input noise may also be printed andor plotted
(see the description of the .PRINT and .PLOT cards).

9.13. .TRAN Card

General ferm:

.TRAN TSTEP TSTOP < TSTART < TMAX> > < tIC>

Examples:

.TRAN INS lOONS MONS

.TRAN IONS IlS UIC

TSTEP is the printing or plotting increment for line-printer output. For use with the

post-processor, TSTEP is the suggested computing increment. TSTOP is the final time, and
TSTART is the initial time. If TSTART is omitted, it is assumed to be zero. The transient
analysis always begins at time zero. In the interval <zero, TSTART>, the circuit is
analyzed (to reach a steady state), but no outputs are stored. In the interval < TSTART,
TSTOP>, the circuit is analyzed and outputs are stored. TMAX is the maximum stepeize
that SPICE will use (for default, the program chooses either TSTEP or (TSTOP-
TSTART)/S0.0, whichever is smaller. TMAX is useful when one wishes to guarantee a com-
puting interval which is smaller than the printer increment, TSTEP.

UIC (use initial conditions) is an optional keyword which indicates that the user
does not want SPICE to solve for the quiescent operating point before beginning the
transient analysis. If this keyword is specified, SPICE uses the values specified using IC-... V:2
UW/NW VLSI Release 2.1 - 25.- 10/1/83!



UW/NW VLSI Consortium SPICE User's Guide

on the various elements as the initial transient condition and proceeds with the analysis.
If the IC card has been specified, then the node voltages on the IC card are used to com-
pute the intitial conditions for the devices. Look at the description on the IC card for its L
interpretation when UIC is not specified.

9.14. FOUR Card

General ferms:

YOUR FREQ OVI < OV2 0V3 ... >

Examlples."

YOUR 100K V(S)

This card controls whether SPICE performs a Fourier analysis as a part of the tran-
sient analysis. FREQ is the fundamental frequency, and OVI, .. , are the output variables for
which the analysis is desired. The Fourier analysis is performed over the interval < TSTOP-
period, TSTOP>, where TSTOP is the final time specified for the transient analysis, and
period is one period of the fundamental frequency. The dc component and the first nine
components are determined. For maximum accuracy, TMAX (see the .TRAN card) should
be set to period/100.0 (or less for very high-Q circuits).

9.1S. PRINT Cards

General farm:

.PRINT PRTYPE OVI < OV2 ... OVa>

Examples:

PRINT TRAN V(4) I(VIN)
.PRINT AC VM(4,2) VR(7) VP(8,3)
PRINT DC V(2) I(VSRC) V(23,17)
PRINT NOISE INOISE
PRINT DISTO HD3 SUM2(DB)

This card defines the contents of a tabular listing of one to eight output variables.
PRTYPE is the type of the analysis (DC, AC, TRAN, NOISE, or DISTO) for which the
specified outputs are desired. The form for voltage or current output variables is as follows:

V(NI< ,N2>) specifies the voltage difference between nodes NI and N2. If N2 (and the
preceding comma) is omitted, gound (0) is assumed. For the ac analysis,
five additional outputs can be accesed by replacing the letter V by:

VR- real part
VI. imaginary part
VM - magnitude
VP- phase
VDB - 204og10(magnitude)

I(VXXXXXXX) specifies the current flowing in the independent voltage source named
VXXXXXXX. Positive current flows from the positive node, through the
source, to the negative node. For the ac analysis, the corresponding
replacements for the letter I may be made in the same way as described

UW/NW VLSI Release 2.1 -26- 10/1/83



UW/NW VLSI Consortium SPICE User's Guide

for voltage outputs.

Output variables for the noise and distortion analyses have a different general form
from that of the other analyses, i.e.

Ov< (X)>

where OV is any of ONOISE (output noise), INOISE (equivalent input noise), D2, HD3,
SIM2, DIM2, or DIM (see description of distortion analysis), and X may be any of:

Rt real part
I- imaginary part
M - magnitude (default if nothing specified)
P- phase
DB- 2 0.log 10 (magnitude)

thus, SIM2 (or SIM2(M)) describes the magnitude of the SIM2 distortion measure, while
HD2(R) describes the real part of the HD2 distortion measure.

There is no limit on the number of PRINT cards for each type of analysis.

9.16. PLOT Cards

Generad form:

-PLOT PLTYPE OVI < (PLOIPHII)> <OV2 <(PL2,PU)> ... OVs>

Examples:

PLOT DC V(4) V(S) V(1)
PLOT TRAN V(17,S) (2,S) I(VIN) V(17) (1,9)
PLOT AC VM(S) VM(31,24) VDB(S) VP(S)
.PLOT DISTO HD2 HD3(R) SIM2
.PLOT TRAN V(S,3) V(4) (0,S) V(7) (0,10)

This card defines the contents of one plot of from one to eight output variables.
PLTYPE is the type of analysis (DC, AC, TRAN, NOISE, or DISTO) for which the
specified outputs are desired. The syntax for the OVI is identical to that for the PRINT
card, described above.

The optional plot limits (PLO,PHI) may be specified after any of the output variables.

All output variables to the left of a pair of plot limits (PLO,PHI) will be plotted using the
same lower and upper plot bounds. If plot limits are not specified, SPICE will automatically
determine the minimum and maximum values of all output variables being plotted and scale
the plot to fit. More than one scale will be used if the output variable values warrant (i.e.,
mixing output variables with values which are orders-of-magnitude different still gives read-
able plots).

The overlap of two or more traces on any plot is indicated by the letter X.
When more than one output variable appears on the same plot, the first variable

specified will be printed as well as plotted. If a printout of all variables is desired, then a
companion PRINT card should be included.

There is no limit on the number of PLOT cards specified for each type of analysis.

10. APPENDIX A: EXAMPLE DATA DECKS

UW/NW VLSI Release 2.1 - 27. 10/1/83



UW/NW VLSI Consortium SPICE User's Guide

* ~10.1. Circuit 1I.-
The following deck determines the dc operating point and small-signal transfer func-

tion of a simple differential pair. In addition, the ac small-signal response is computed over
the frequency range 1Hz to lOOMEG~ft.

SIMPLE DIFFERENTIAL PAIR
VCC 7 012
VEE 8 0-12
VIN 10AC 1
RS1 12 1K
RS2 6 0 1K
013 2 4 M0D
Q2 5 64 MODI
RC1 7 3 OK
RCZ 7 510K
RE 4 8 10K
MODEL MODI NPN BF=50 VAF=50 IS=1.E-12 RB=100 CJC=.SPF TF=.6NS
XE V(5) VIN
AC DEC 10 1 1OOMEG
PLOT AC VM(S) VP(5)
.PRINT AC VM(S) VP(S)
END

10.2. Circuit 2
The following deck computes the output characteristics of a MOS- FET device over the

range 0-1OV for VDS and 0-5V for VOS.

MOS OUTPUT CHARACTERISTICS
OPTIONS NODE NOPAGE

VDS3O0
VGS2O0
Ml 12 00 MODI L=4U W=6U AD=1OP AS=1OP
.MODEL MODI NMOS VTO-2 NSUB=1.0E15 UO=550
*VIDS MEASURES ID, WE COULD HAVE USED VDS, BUT ID WOULD BE NEGATIVE

VIDS3 1
.DC VDS 0 10.5 VOS 0 51
JPRINT DC I(VIDS) V(2)
PLOT DC I(VIL.;)
END

10.3. Circuit 3
~2 The following deck determines the dc transfer curve and the transient pulse response

of a simple RTL inverter. The input is a pulse from 0 to 5 Volts with delay, rise, and fall
times of 2ns and a pulse width of 3Ons. The transient interval is 0 to lO0ns, with printing to
be done every nanosecond.

UW/NW VLSI Release 2.1 . 28- 10/V)83

p~ ~ ~~r t - ...-.. .f



UW/NW VLSI Consortium SPICE User's Guide

SIMPLE RTL INVERTER
VCC 405
VIN 10 PULSE 0O5 2NS 2NS 2145 3ONS
RB 12 10K
01 32 001
RC 34 1K
.PLOT DC V(3)
.PLOT TRAN V(3) (0,5)
.PRINT TRAN V(3)
MODEL Q1 NPN BF 20 RB 100 TF JNS CdC 2F
DC VIN 0 50.1
TRAN INS 10ONS
END

10.4. CIrcult 4
The following deck simulates a four-bit binary adder, using several subcircuits to

describe various pieces of the overall circuit.

ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER

SUBCIRCUIT DEFINITIONS

SUBCKT NAND 123 4
*NODES: INPUT(2), OUTPUT, VCC

019 5 1lOMOD
DICLAMP 0 1 DMOD
02 9 52 OMOD
D2CLAMP 0 2 DMOD
RB 4354K
Ri 4 6 16K
03 6 98 OMOD
R2 80 1K
RC 47 130
04 7 6 10 OMOD
DYBEDROP 10 3 DMOD
05 3 80 MOD
ENDS NAND

SUDCKT ONEBIT 123 4 56

NODES: INPUT(2), CARRY-IN, OUTPUT, CARRY-OUT, VCC

X1786NAND
X3 27 96 NAND
X489106NAND
X5 3 10116 NAND
X6 31112 6NAND
X7 10 111 I6 NAND
X8 12 13 4 6NAND
X9 11 7 56NAND
ENDS ONEDIT

UW/NW VLSI Release 2.1 - 29- 10/1/83



UWINW VLSI Consortium SPICE User's Guide

SUDCKT TWODIT 12 3 4 5 67 8 9
NODES: INPUT - BTO2)/ BITl1(2). OUTPUT - BITO/ BITI,

6CARRY-IN, CARRY-OUT, VCC
X1 1 2 7 5 10 9 ONEBIT
X2 3 410 6 8 9 ONEBIT
ENDS TWODIT
SUBCKT FOURBIT 1 2 34 56 7 89 10 11 12 13 14 15

*NODES: INPUT - BITO(2)I BIT1(2) / BIT2(2) / BIT3(2),
a OUTPUT - BITOIBFF1IBITBIT3CARRY-INCARRY-OUTVCC

Xl 123 4 910 13 1615 TWOBFF
X2 56 7 91112 16 1415 TW0B1T
ENDS FOURDIT

* ~ DEFINE NOMINAL CIRCUIT

MODEL DMOD D
MODEL OMOD NPN(DF=75 RB=100 CJE=1PF CiC=3PF)
VCC 99O0DC 5V
VINlA 1 0 PULSE(0 3 0 IONS IONS IONS SONS)
VIN1B 2 0 PULSE(0 3 0 IONS IONS 2ONS lOONS)
VIN2A 3 0 PULSE(0 3 0 IONS IONS 4ONS 200NS)
VIN2B 4 0 PULSE(0 3 0 IONS IONS SONS 400NS)
VIN3A 5 0 PULSE(0 3 0 IONS IONS 16ONS BOONS)
VIN3D 6 0 PULSE(0 3 0 IONS IONS 320NS 16M0N)
VIN4A 7 0 PULSE(0 3 0 IONS IONS 640NS 3200NS)
VIN4B 8 0 PULSE(0 3 0 IONS IONS 1280NS 64ONS)-
XI 12 3 4 5 67 8 9 10 11 12 0 1.3 99 FOURBIT

* RBITO 9O01K
RBIT1 10 0 1K
RBT21101IK

* RBIT3 12 01K
RCOUT 13 0 1K
.PLOT TRAN V(1) V(2) V(3) V(4) V(S) V(6) V(7) V(B)
PLOT TRAN V(9) V(10) V(11) V(12) V(13)

* PRINT TRAN V(1) V(2) V(3) V(4) V(S) V(6) V(7) V(8)
-: PRINT TRAM V(9) V(10) V(11) V(12) V(13)

...(FOR THOSE WITH MONEY (AND MEMORY) TO BURN)
TRAN INS 6400NS

.OPTIONS ACCT LIST NODE LIMPTS=6401
END

10J. Circait 5
The following deck simulates a transmission-line inverter. Two transmission-line ele-

ments are required since two propagation modes are excited. In the case of a coaxial line, the
first line (TI) models the inner conductor with respect to the shield, and the second line

* (T2) models the shield with respect to the out- side world.

UW/NW VLSI Release 2.1 - 30 - 10/1/83

-. ... .z. m u .. .. .....



UWINW VLSI Consortium SPICE User's Guide

TRANSMSSION-LINE INVERTER
VI 10 PULSE(0 10 01iN)
R1 1250
Xi 20 0 4TLINE
R2 40 50

SUBCKT TLINE 12 3 4
T1 12 3 4ZO=50OTD=.5NS

*T2 2 0 40 Z=IWTD=iNS
.ENDS TLINE
.TRAN O.iNS 2ONS
PLOT TRAN V(2) V(4)
END

11. APPENDEK B.- NONLINEAR DEPENDENT SOURCES
SPICE allows circuits to contain dependent sources charac terized by any of the four

equations

i=f(v) v=f(v) if(i) v=f(i)

where the functions must be polynomials, and the arguments may be multidimensional. The
polynomial functions are specified by a set of coefficients pO, pl, ..., pn. Both the number of

* dimensions and the number of coefficients are arbitrary. The meaning of the coefficients
* depends upon the dimension of the polynomial, as shown in the following examples:

Suppose that the function is one-dimensional (that is, a function of one argument).
Then the function value Nv is determined by the following expression in a (the function argu-
ment):

fv =pO -I-ia +p2*a2 +p3-a 3 4-4a 4 +p5-a5 +..

Suppose now that the function is two-dimensional, with arguments a and b. Then the
function value v is determined by the following expression:

fv =pO +pi-a +p2-b +p3a 2 +p4-a-b +pS-b 2 +p6-a3 +

p7-a2 b +p8 .a-b2 +p9.b3 +...

Consider now the case of a three-dimensional polynomial function with arguments
a, b, and c. Then the function value fv is determined by the following expression:

fv =pO +pi-a +p2.b +p3-c +p4-a 2 +pS-a-b +

p6.a c + p7-b2+ p8.b.c + p9.c2 + p 10-a3 +

pi1-a 2 .b +pl2a 2 .c +pi3.a.b2 +pi4.a.b-c +

p 15.ac 2 +p1 6.b3 +p 17.b2 .c +

p 19-c3 +p20.a 4 +...

Note: if the polynomial is one-dimensional and exactly one coefficient is specified, then
SPICE assumes it to be p1 (and p0 = 0.0), in order to facilitate the input of linear con-
trolled sources.

For all four of the dependent sources described below, the initial condition parameter
is described as optional. If not specified, SPICE assumes 0 the initial condition for depen-
dent sources is an initial initial condition to obtain the dc operating point of the circuit.

-After convergence has been obtained, the program continues iterating to obtain the exact
value for the controlling variable. Hence, to reduce the computational effort for the dc
operating point (or if the polynomial specifies a strong nonlinearity), a value fairly close to

UW/NW VLSI Release 2.1 - 31 - 10/1/83

,,Z,,



UW/NW VLSI Consortium SPICE User's Guide

the actual controlling variable should be specified for the initial condition.

11.1. Volta-Controlled Current Sources

General frn:

GXXXXXXX N+ N- < POLY(ND)> NC1+ NCI- ... P0 < P1 ... > <IC=...>

Examples:

G110$300.1M
GR 17 3 17 3 0 IM I5M [C=2V
GMLT 23 17 POLY(2) 3 5 1 2 0 IM 17M 3.5U IC-2.5, 1.3

N+ and N- are the positive and negative nodes, respectively. Current flow is from the
positive node, through the source, to the negative node. POLY(ND) only has to be
specified if the source is multi-dimensional (one-dimensional is the default). If specified, ND
is the number of dimensions, which must be positive. NCI+, NCI-, .. Are the positive and
negative controlling nodes, respectively. One pair of nodes must be specified for each
dimension. PO, P1, P2, .- , Pn are the polynomial coefficients. The (optional) initial con-
dition is the initial guess at the value(s) of the controlling voltage(s). If not specified,
0.0 is assumed. The polynomial specifies the source current as a function of the controlling
voltage(s). The second example above describes a current source with value

I =10- 3 .V(27,3) +1.5 x 10- 3 .V(17,3) 2

note that since the source nodes are the same as the controlling nodes, this source actually - -

models a nonlinear resistor.

11.2. Voltae-Cetrolled Voltage Sources

General fern:

EXIXXXIX N+ N- < POLY(ND)> NC1+ NCI- ... Pf < PI ... > < [C-...>

Eamples:

E13 4 21 17 10.5 2.1 1.75
EX 17 0 FOLY($) 13 0 I5 0 17 0 0 111 IC=1.J,2.0,17.35

N+ and N- are the positive and negative nodes, respectively. POLY(ND) only has to
be specified if the source is mugti- dimensional (one-dimensional is the default). If
specified, ND is the number of dimensms, which must be positive. NC1+, NCI-, - are the
positive and negative controlling nodes, respectively. One pair of nodes must be specified
for each dimension. PN, P1, P2, ..., Pn are the polynomial coefficients. The (optional)
initial condition is the initial guess at the value(s) of the controlling voltage(s). If not
specified, 0.0 is assumed. The polynomial specifies the source voltage as a function of the
controlling voltage(s). The second example above describes a voltage source with value

V - V(13,0) + V(15,0) + V(17,0)

(in other words, an ideal voltage summer).

TJW/NW VLSI Release 2.1 -32 - 10/1183

.,4.



UW/NW VLSI Consortium SPICE User's Guide

11.3. Curent-Cemtrolled Current Sources

Genral torm:

FXXXXXXX N+ N- < POLY(ND)> VNI < VN2 ... > P0 <P1 ...> <IC=...>

Examples:

F1 12 10 VCC IMA 1.3M
FXFER 13 20 VSENS O 1

N+ and N- are the positive and negative nodes, respectively. Current flow is from the
positive node, through the source, to the negative node. POLY(ND) only has to be
specified if the source is multi-dimensional (one-dimensional is the default). If specified, ND
is the number of dimensions, which must be positive. VN1, VN2, .. are the names of vol-
tage sources through which the controlling current flows; one name must be specified for
each dimension. The direction of positive controlling current flow is from the positive
node, through the source, to the negative node of each voltage source. P0, P1, P2, .. , P
are the polynomial coefficients. The (optional) initial condition is the initial guess at the
value(s) of the controlling current(s) (in Amps). If not specified, 0.0 is assumed. The poly-
nomial specifies the source current as a function of the controlling current(s). The first exam-
pie above describes a current source with value

I =10- 3 + 1.3X10- 3 .(VCC)

"1.4. Currnt-Controlled Veltae Sources

General ftom:

XXXXIXXX N+ N- < POLY(ND)> VNI < VN2 ...> PO <PI ...> < IC=...>

Examples:

HXY 13 20 POLY(2) VINI VIN20 0 001 [C1 OS 1.3
HR 4 17 VX 60 1

N+ and N- are the positive and negative nodes, respectively. POLY(ND) only has to
be specified if the source is multi- dimensional (one-dimensional is the default). If
specified, ND is the number of dimensions, which must be positive. VN1, VN2, .. are the
names of voltage sources through which the controlling current flows; one name must be
specified for each dimension. The direction of positive controlling current flow is from the
positive node, through the source, to the negative node of each voltage source. P0, PI, P2,

fN are the polynomial coefficients. The (optional) initial condition is the initial gues
at the value(s) of the controlling current(s) (in Amps). If not specified, 0.0 is assumed.
The polynomial specifies the source voltage as a function of the controlling current(s). The
first example above describes a voltage source with value

V -I(VIN 1)-I(VIN2)

12. APPENDIX C: DIPOLAR MODEL EQUATIONS

Acknowledgment: This section has been contributed by Bill Bider- mann at HP labs.

(Gmin terms omitted)

UW/NW VLSI Release 2.1 - 33 - 10/1/83

-.................................-. .,.,...., ... -,,-,-,,



UWNKW VLSI Consortium SPICE User's Guide

12.1 D.C. MODEL

II OEB*(~~ +Bi~e(NJA'*_ - 1) + ISE (e(Nd)Y* - 1) + IS (e(N( P -1

duETe s too reobntionmi in texpsioofhebase current ID represent the components
dueto ecobintio intheBE and BC space charge regions at low injection.
IfIRE not specified

~~R RB =RBM 4'"~

* If IRE specified

* - RB3(RB-RBM)[ ta ++ROM)
ztan z)

Where:

Z 24jv11\7IRB)'

QE =JI( 1 +\kT:FR2)

QiA --

NOTE: IRE is the current where the base resistance falls halfway to its minimum value.
VAF and VAR are forward and reverse Early voltage& respectively. IKF and IKR determint
the high current beta rolloff with IC. ISE, ISC, NE and NC determine the low current
beta rolloff with IC.

12.2 A.C. MODEL

CBE -f (TFF*( e(N)kqFl ) +CJE (I s- E

Whore:

TFF TF( I T.(* F) .44

IF - IS (.Npwi - 1)

CBI -CDC,'(I - XCJC)

CD2 -CDC-XCIC

CDC - TR 'lire iIB)+ CjC(1- )-Mjc

CSS -cs IS (1 .. *)-Mjs

NOTE: all pmde. capaltwun of the twi CO.(I i -M revrt t* tw or

wheuV>FC-phi (FerCSSUFCO0)

UW/NW VLSI Release 2.1 .34- 10/1/83



UWINW VLSI Consortium SPICE User's Guide

12.3 NOISE MODEL
Thermal Noise:

IRBB 2 -fl'D-BA f
IRC2 = gA f

IRE2 =2RtfA f + KF[AA f

Note: The first two terms are shot noise and the last term is flicker noise.

ICN2 =-2qIC A f

Note: This is shot noise.

12. TEMPERATURE EFFECTS
All junctions have dependences identical to the diode model but all N factors are con-

sidered equal 1.
BF and BR go as (TN%3 )XTB when NF-1. This is done through appropriate changes

in BF ,BR and ISE, ISC according to the following equations respectively:
B F = BF- (TRIMOXpYTB

BR BRTJ1XT

IS E - ISE -(TpWTjujXTI -XTB) e go TT~bPQ

IS C -ISC* (~T~ib(XTI -XTB ) 4F T-46I'

12.J EXCESS P13ASE
This is a delay (linear phase) in the gin generator in AC analysis. It is also used

in transient analysis using a Bessel polynomial approximation. Excess phase, PTF, is specified
as the number of extra degrees of phase at the frequency

f j4,;.pHertz

12. APPENDIX D: ALTER STATEMENTY AND THE SOURCE-STEPPING METHOD

The ALTER statement allows SPICE to run with altered circuit parameters.

General form:

-~ ALTER
ELEMENT CARDS (DEVICE CARDS, MODEL CARDS)
ALTER (or .END CARD)

3 Examples:

RI 10 SK
VCC3 0 10
M13 2 0MODI L-SU W-2U
MODEL MODI NMOS(VTO-l.0 KP-2.0E-5 PHI=OA NSUB=2OEL5 TOX-01U)

U ALTER
RI10 3.5K
VCC3 0 12
M 3 2 0MODI L-IOU W=2U

UW/NW VLSI Release 2.1 .35- 10/1V83



UW/NW VLSI Consortium SPICE User's Guide

.MODEL MODI NMOS(VTO=12 KP=2OE-5 PHI=0,6 NSUB=5.0EIS TOX=l.U)
ALTER 

" "

MI 3 2 0 MODI L=10U W-4U :A

END

This card introduces the element(s), device(s) and model(s) whose parameters are
changed during the execution of the input deck. The vanalyses specified in the deck will start
over again with the changed parameters. The ALTER card with the cards defining the
new parameters should be placed just before the END card. The syntax for the element (dev-
ice, model) cards is identical to that of the cards with the original parameters.

There is no limit on the number of ALTER cards and the circuit will be re-analyzed as
many times as the number of ALTER cards. Subsequent ALTER operations employ parame-
ters of the previous change. No topological change of the circuit is allowed.

The source-stepping method can enhance DC convergence. But it is dower than
direct use of the Newton-Raphson method. Therefore it is best used as an alternative to
achieve convergence of DC operating point when the circuit fails to converge by using the
Newton-Raphson method. The source-stepping method is used by SPICE when the variable
ITL6 in the .OPTIONS card is set to the iteration limit at each step of the source(s).

VRl"?" 1

rt

UW/N VLI Reeas 2.1- 3. 10118
'i-f .-. * ' ft .ft - C' t ft . . t..
.5- . . . . .~ .v.*-*' * .- C' . ~., -. - - \fC**C'f'~fftV* .,-.

ft f ft . t . - .- .



Designing Finite State Machines with PEG

Cordon Hamazchi

University of California at Berkeley

ABSTRACT

PEG is a finite state machine compiler. It trans!ates high level
language descriptions of finite state machines into the logic equa-
tions needed to implement state machine designs. Since the out-
put format is compatible with egntott. PEG may be used as a front
end for Berkeley PLA tools.

1. Introduction

PEG (PLA Equation Generator) is a design tool for finite state machines. It
compiles high level language descriptions of finite state machines into the logic
equations needed to implement a design.

PEG programs are isomorphic to Moore machine state diagrams. There is a
one-to-one correspondence between states in a state diagram and state
definitions in the corresponding PEG program. The translation from state
diagrams to PEG programs is simple and straightforward.

Designing with PEG provides a number of advantages over the traditional
pencil-and-paper approach method of FSM design. PEG's high level language
enables designs and design changes to quickly be implemented. PEG programs
provide easy-to-understand documentation with clear control flow. PEG does the
tedious and error-prone bookkeeping task of generating output and next state
bits as a function of current state bits. It checks for design errors and elim-
inates redundant terms in logic equations.

As output PEG generates logic equations in the eqn format accepted by
eqntott [Crnelik]. another Berkeley design tool. By piping the output of PEG
through uqvtott, PEG may be used as a front end for Berkeley PLA tools such as
tpla [Mayo]. mkpla (Landman], pAasto (Fang), and plasort [Kleckner&Landman].
As an option, PEG will also print the unminimized truth table from which the
logic equations are derrived.

3. A Smple EZample

Designing finite state machines using PEG is introduced with a very simple
example. Figure 1 shows the state diagram for a four-state machine implement-
ing a 2-bit binary counter. The PEG program implementing this design is shown

U . in lgure 2.

%-1-



Designing Finite State Machines with PEG March 25. 1953

Start

." .

Do 01 10 11

Figure 1: State Diagram for Example 1

-Simple PEG program for 2-bit counter
-State transition on every clock
-No reset => starts in a random state

I Start -This is state 0
-This is state 1
-This is state 2
-This is state 3

GOTO Start;

Figure 2 PEG Program for Example 1

The PEG program in figure 2 consists of four state descriptions. The pro-
gram has no inputs. The outputs of the state machine are its next state bits.
which are automatically generated by PEG.

In its most simple form. a PEG program consists of a list of state descrip-
tions. The sample program has four states. Each state has four parts: an
optional label, a colon, an optional signal assertion part, and and optional con-
trol part.

The first state in the example is labeled with the identifier Start. The label
is necessary only because of the GOTO from state 3 back to state 0.

States 1 and 2 are examples of the minimal state description. These states
are completely defined by a colon, which acts as a place holder for the state.
Empty states, in which no branching or signal assertions occur, are sometimes
used to introduce necessary delays in FSMs.

Flow of control in PEG programs is sequential unless otherwise specified.
Since no control information is present for states 0, 1, and 2, the program steps
sequentially through the states 0, 1, 2. and 3. State 3 has control information

-2-



Designing Finite State Machines with PEG March 25. 1983

The LNORDER and OUTORDER statemeats specify that the resulting PLA -

inputs and outputs, from left to right, are InStOo. lnStl". OutStl. and OutStOO.

Following the OUTORDER statement are the logic equations for the two out-
put variables. OutStl* and OutStO. The exclaimation mark 'I" indicates logical
negation. The ampersand "&" signifies the logical AND, while the vertical bar.
signifies a logical OR.

32. Truth Table

The -t option generates a truth table for the finice state machine. This truth
table is written to the file peg.summry. The truth table for example 1 is shown
in figure 4.

INPUTS: S0: InStO" (msb)
so1: InSt (lsb)

OUTPUTS: nOl: OutStl* (lsb)
nOO: OutStO" (msb)

State Table s u n n
0 1 1 0

0 0 1 0

1 0 1 
00

1 1 0 0

Figure 4: Truth Table for Example 1.

Labels across the top of the truth table identify its columns. The mapping
from column labels to actual signal names is given in the lists of input and out-
put signals which preceed the truth table. To the right of the truth table are the
names of the states described by the rows of the table.

4. Another Example
The second and more complex example shows the state diagram and

corresponding PEG program for a FSM which recognizes the grammar (I!0)0100.
The state diagram for this FSM is shown in figure 5.

The PEG program which implements this design is given in figure 8. Figure
6 describes a state machine with four states. The state machine has two inputs.
RESET and in, and one output, accept.

Assume the text of figure 2 is in a file called prog. Logic equations for the
state machine are generated by running the command

peg preg

-4-



.4.
7 -I

Designing Finite State Machines with PEG

Gordon Harnachi

University of California at Berkeley

ABSTRACT

PEG is a finite state machine compiler. It translates high level
language descriptions of finite state machines into the logic equa-
tions needed to implement state machine designs. Since the out-
put format is compatible with eqntott. PEG may be used as a front
end for Berkeley PLA tools.

1. Introduction

PEG (PLA Equation Generator) is a design tool for finite state machines. It
compiles high level language descriptions of finite state machines into the logic
equations needed to implement a design.

PEG programs are isomorphic to Moore machine state diagrams. There is a
one-to-one correspondence between states in a state diagram and state
definitions in the corresponding PEG program. The translation from state r
diagrams to PEG programs is simple and straightforward.

Designing with PEG provides a number of advantages over the traditional
pencil-and-paper approach method of FS M design. PEG's high level language
enables designs and design changes to quickly be implemented. PEG programs
provide easy-to-understand documentation with clear control flow. PEG does the
tedious and error-prone bookkeeping task of generating output and next state
bits as a !unction of current state bits. It checks for design errors and elim-
inates redundant terms in logic equations.

As output PEG generates logic equations in the egn format accepted by
eqntott [Cmelik]. another Berkeley design tool. By piping the output of PEG
through uqntott, PEG may be used as a front end for Berkeley PLA tools such as
tpla [Mayo], mvapla [Landman]. presto [Fang], and pLasort [Kleckner&Landman].
As an option, PEG will also print the unminimized truth table from which the
logic equations are derrived.

a Simple Example

Designing finite state machines using PEG is introduced with a very simple
example. Fligure 1 shows the state diagram for a four-state machine implement-
ing a 2-bit binary counter. The PEG program implementing this design is shown
in figure 2.

.- 1-

A:i 4



Designing F:nite State Machines with PEG March 25, 1933

-Simple FSM example: Accepts the grammar (1'0)'i00

INPUTS : RESET InStream; I
OUTPUTS : accept;

Top : IF NOT InStream THEN LOOP; -0"

Sawl IF InStream THEN LOOP; --1

: IF InStream THEN Sawl; --10

: ASSERT accept;
IF InStream ThEN Sawl ELSE Top; --100

Figure 6: PEG Program Recognizing (1 0)0100

INORDER = RESET InStream InStO InStl*;
OUTORDER - OutStl = OutStO" Accept;
OutStl* (!RESET& InStream)"

(!RESET&!InStream& InStO&'k!nStl*):
OutSto* (!RESET! InStream& InStO&!InStl")

!InStream&!InSt0& InSt 1);
Accept - (InStO*& InStl*);

Figure 7: Equations for Example 2.

called accept. The FSM asserts this signal high if a string in the given grammar
is recognized. If any outputs are generated by a PEG program. they must be
declared in an OUTPUTS statement which immediately follows the INPUTS
statement. If no INPUTS statement is present, then the OUTPUTS statement is
the first program statement.

Example 2 introduces the IF-THEN-ELSE control construct. This construct
is used to provide two-way branches based onl/ =n a stvngte irpst signai.
Branches based on more than one input signal are handled by the CASE state-
ment which has not yet been presented. IF statements do not nest: Statements
of the form IF-THEN-ELSE-IF are not allowed. The syntax of the IF is:

IF [ NOT] <signal> THEN <state nnwna> ELSE <state name>];

• -0" , .0. ,... ..... . ," , . ,. .. .... . . . ., ' " .. ' . . _' . '. ,t ;'.', -:, " * c.* . , '-, ., '' .-.. .



Designing Finite State Machines with PEG March 25, 1953

*. specifying a jump back to the state labeled Start.

Since it has no sequential next state, control must always be defined for the
last state in the program. PEG generates an error message and quits if control
is not defined for the last state.

Although state transitions are performed on clock ticks, no clock is men-
tioned in the program. It is the user's responsibility to implement the state
machine with synchronous logic to latch input and output signals.

Comments begin with a double dash "-" and terminate at the end of the line
on which they appear. The first three lines of the program are comments. Com-
ments also appear on lines 5 through 8.

Input is free-format. White space may appear anywhere in a program to
enhance readability.

3. Interpreting the Output

Assuming that the PEG program for example 1 is in a flIa called counter, the
following Unix command line may be used to invoke PE.

peg counter

The resulting output is shown in fiure 3. Generating a PLA from the same input
-:., file is accomplished with the co-n=and line:

Top peg counter egntott ' mkpla - - y 2

The digit 2 appears on the command line as an argument .o mnkpla to indicate
that there are 2 state bits to be Led back from the output. to the input of the
PLA. In order specify the number of state bits required. it nay be necessary to
run PEG twice: once to deternine the number, and another time to actually
generate the PLA.

INORDER - InStO* InSt 1I

OUTORDER - OutSt 10 OutSto0;
OutStl (!InStl);
OutSt0 - (InStO&1InSt1"), (!InSt0& InSt1');

Figure 3: PLA Equations for Example 1.

31. Equations

PEG generates the two input variables InStOO ard /nSt1* which are the
state inputs for the finite state machine. It also generates two output variables
Out&t04 and OutStl*, the next-state outputs. Any signal name ending with an

- asterisk was generated by PEG.

-3- I
* . .



Designing Finite State Machines with PEG March 25. 1983

5. FInal Example

Figures 9 and 10 show the state diagram and PEG program for a state
machine which decodes 3 bits into 0. 1, 2. 3, and "other". Example 3 shows the
use of multiple inputs, multiple outputs, and multi-way branches.

Oul~y €]rouncie Fomnd3 round~the -

Figure 9: State Diagram for Examnple 3

Multi-way branches and branches based on two or more inputs are handled

by the CASE statement. The CASE sta tement consists of the keyword CASE fol-

lowed by an input signal list. a list of case selectors. and an ENDCASE.

A case selector specifies two thins: a bit pattern corresponding to the

input signals, and a net-state for that combination of inputs. Bit patterns are

strings composed of the characters '0', '1'. andL signals in the input signal list.

Don't-cares are specified with.?

"..J



- o-, -

Designing Finite State Machines with PEG March 25, 1983

Top

[InStrra J

0 0

• "[InStresni
0

aeeptI

Figure 5: State Diagram Recognizing (11O)'I00

Since this program has two inputs, they are declared in the i,%PUTS state-
ment. If a PEG program has any inputs they must be declared in an INPUTS
statement which must be the first statement in the program. The input RESET
is a special keyword input. The other program input. InStrer, is used to gen-
erate the next state for the FSM.

RESET indicates that when the RESET signal is asserted the state machine
jumps to the top of the program which in this case is named Top. When this
keyword is present, conditional branches to the first state are automatically
added to the next state expressions for each state. If RESET is not listed as an
input, the program initializes in a random state.

IF the FSM designer does not want to pay the penalty of a larger and slower
finite state machine, RESET may be omitted as it was in example 1. In this case
the reset function may be external to the PEG program by implementing the
FSM in such a manner that the next state feedback lines are pulled low when the
RESET signal is asserted. This method will work because the top state in a PEG
program is always assigned to state zero.

-- The OUTPUTS statement declares that this program has a single output

-5-

I, --' .. --.- ,-. " ," .. .V '''' ., ", ".'- " ''' -V ., .---'. -- ..' ' ." , , , .- -,



Designing Finite State Machines with PEG March 25. 1953

<Control> CASE ( (IdentiflerUst>) <Cases> czDefaultCase> j
IF <IDENTIFIOR> THEN <IDENTIFIER>;
IF <IDENTIFIER> THEN IDENTfIR> ELSE <IDENTIFIER>;
IF <NOT> <IDENTIFER> THEN <IDENTIFER>;
IF (NOT> <IDENTIFIER> THEN <IDENTIFER> ELSE <IDENTIFIER>;

IGOO <IDENTIFIER>

<CaseSLatement> czBit~ist> => < IDENTIFIER>;

<Cases' :(Cases> <CaseStatement> I<CaseStatement>

(Bit> : 0111 ?

<BHt Lst> :<Bit~st <Bit> I <Bit>

<Def aultCasp> : ENDCASE => 'IDENTIFIER> ;IENDCASE;

(NOrf> "NC

<Comment>: -.

<IDENTIFIE'R> :[A-Za-z]1A-ZA-z 3-9.J



Designing Finite State Machines with PEG March 25, 1993

INPUTS: iOO: RESET
iOl: InStream
sOO: InStO* (msb)
s01: InStl* (lsb)

OUTPUTS: nOl: OutStl* (lsb)
nO: OutStO* (msb)
oOO: Accept

State Table i i s s n n o
0 1 0 1 1 0 0

1 - 0 0 0 - Top
0 0 0 0 0 0 - Top

I,0 1 0 0 1 0 - Top

1 - 0 1 0 0 - Sawi
0 0 0 1 0 1 - Sawl
0 I 0 1 1 0 - Sawl

I - 1 0 0 0 - Sawl+ 1
0 0 1 0 1 1 - Sawl+1
0 1 1 0 1 0 - Sawl+l

1 - 1 1 0 0 1 Sawl+2
0 0 1 1 0 0 1 Sawl+2
0 1 1 1 1 0 1 Sawl+2

Figure 8: Truth table for Example 2.

The ELSE clause is optional: If it is omitted, the ELSE defaults to the next
sequential state in the program. Thus, in state Top, if IrStream is high. then the

condition in the IF is false and the program takes the default branch to state
Saul.

The alert reader will have noticed that the state name LOOP is used but not
defined. This is intentional. LOOP Is a keyword which means to stay in the
current state. It is an error to define a state with the label LOOP.

The final state in example 2 shows the first use of the ASSERT statement.
The accept signal is asserted only in the accepting state of the FSM. If an
ASSERT statement is present in the definition of a state, it must preceed the
state's control statement.

-7-e' NP "

.l - 7



Specifying Design Rules for Lyra

Michael H. Arnold
Computer Science Division

University of California
Berkeley. CA 94720

The Lyra leyout rule checker can be retargeted to new design rules, permit-
ting Lyra to be used with multiple tachnologies and processes and also mak-
ing it possible to track design rules as they change over time. To adapt Lyra
to a new ruleset, a symbolic rulese t specification is written and then com-
piled -^.th tne Lyra rule compiler to generate an executable module for
checking Lhe new rules. Rules are :ipecified in terms of Lyra's corner based
paradigm: Each rule gives a context specifying corners where it applies. and
a set of constraints to be applied at these corners. Complex or unusual rules
can be coded directly in terms of a primitive rule construct. Common
checks, such as width and spacing, -ire coded more concisely using rule mac-
ros.

This manual gives the details of wr ting rulesets for Lyra. All the basic con-
structs for rule specification are explained, and the rule macros are present-
ed. Compilirg, testing and installat-.on of rulesets are also discussed.

The work described here was supported in art by the Defense Advanced Research rqec'm
Agency (DoD), AA Order No. 3803. rnomtored Cy the Naval EMectronic System Command under"-' - '-'.Contract No. NOOO39-81-K-0251

,1



Specifying Design Rules for Lyra March 29. 1983

1. IntroducUon
The Lyra layout rule checker can be retargeted to new design rulesets.

This is important because design rules for many different technologies and
processes are in use, and because rules change over time.

To retarget Lyra for a new ruleset, it is necessary first to prepare -a
ruleset specification in the Lyra format. This rule specification can then be
compiled, by the Lyra rule compiler, to generate an executable file for
checking the specified rules. This executable file is invoked by the Lyra fron-
tend to check designs against the ruleset.

This document explains how to write design rule specifications for Lyra.
The next section sketches the basic paradigm for rules in Lyra. The following
three sections give all the details (syntax and semantics) of rule
specifications. The final section gives suggestions for writing, compiling and
testing Lyra rulesets.

Z The Idea- Comer Based Rule Checkmg
In Lyra, rules are given as constraints to be applied at corners. Each

rule gives a context describing the corners it applies to and a set of con-
straints to be checked at these corners. Constraints are rectangular regions
where some combination of layers are required or prohibited. A rule to
check spacing on a metal layer, M, would give constraints to be applied
around the outside of corners on layer M disallowing M in the vicinity. This is
illustrated in Figure 1. In the figure the hatched constrains have been~violated indicating the two geometries are spaced too closely. Figure 2 sug-

gests graphically the form the spacing rule takes in Lyra. The left hand side
characterizes convex corners on layer M. namely M is present in one qua-
drant (the upper right) but not in adjacent corners. The right hand side of
the rule gives a cluster of constraints to be applied at all corners matching

*. the left hand side of the rule. The other corner orientations, obtained by
rotating this rule, are implied.

When complete rulesets are considered, several complications arise. It
is not sufficient to deal only with corners on single mask layers. Some rules
refer to corners defined by the interaction of mask layers, for example
transistor rules in nMOS involve the corners generated by crossing polysili-
con and diffusion features. Some rules do not apply at all corners on a
layer, but only if some additional layer pattern is present at the corner. For
instance the Lyon implant rules used in the Berkeley nMOS ruleset require
one set of constraints to be applied at transistor corners in the direction of
polysilicon and another in the direction of diffusion. Such rules require the
specification of additional context information in the left hand side of the
rule. F"mally, for completeness, it is necessary to consider concave corners
in addition to convex ones. However all of these situations can easily be cast
in terms of the rule format suggested by Figure 2. Surprisingly, this simple
paradigm can be used to accurately express almost all design rules. Excep-
tions are a few rules involving connectivity, and some of the more involved
industrial rules.

In Lyra rule specifications, composite layers are defined for rules which
do not apply to corners on actual mask layers, and the left hand sides of

8 rules are split into two parts: a comner speciflcation giving the layer and con-
vexity of corners to which the rule applies, and an also cLause which gives
any additional pattern of layers required for the rule to apply. A set of rule

=i - 1- ,

I%

ht



Specifying Design Rules for Lyra March 29, 1983

AW No* Legend

NorNO NoN

M

NoNOT

P~gw.2. Mtal pacig Rue. 7

aw-

AV X. A- M .*



Specifying Design Rules for Lyra March 29, 1983

macros is used for concise coding of the more common rules. e.g. width and
spacing.

This is the idea of the corner based paradigm. the following sections give
the details.

. Definitions
This section defines the basic constructs involved in rule specifications

for Lyra. The first part of the section deals with syntax and dimensional
units. Then the layer declaration are defined. These preceed the rule
specifications in Lyra ruleflLs. The last part of the section develops the rule
construct which is used directly to specify the more complex or unusual
design rules, and to which the macros given in the next section expand. See
section 5 for the overall organization of ruleiles.

3.1. lisp Syntax
Lisp syntax is used in the Lyra rule files. This means constructs have

the general form.
(<construct name> <ezprl> <expr2> ... <ezprn>)

The expressions. <ezprl> .... <expn> may be numbers, layer names, text.
or subconstructs. The use of constructs within constructs leads to nested
parenthesized lists. For example, a pair of rules concerning transistor form
in nmosMC, the Mead & Conway nMOS rules are shown below (the details are
not important).

malformed green-transistor abuttment
(rule

corner: (a G))
also: nil (not D) (or D (not P)) (and P D (not X)))
constraints: (build-constraint. (quad3 1 1) fals "tr r')))

;malformed red-transistor abuttment(rule "
corner. (a R))
also: nil (not D) (or P (not D)) (and P D (not X)))
constraints: (build-constraints (quad3 1 1) fals "tr r')))

Note the use of semicolons to delimit comments. The lisp parser treats all
text between a semicolon and the end of the line as a comment.

The rule files are actually executed as lisp code by the rule compiler.
Care must be taken to balance parentheses properly. If parentheses are not
balanced, cryptic error messages from the lisp parser will occur when com-
pilation is attempted.

Many editors provide special functions for editing lisp files. In Vi it is
useful to set &p and slwnatch mode:

:st lispam
When showmatch is set, typing a closing parenthesis causes the cursor to
momentarily jumps to the matching open parenthesis. In Lisp mode, lisp
indentation style is supported (e.g. with the open command), you can move
from any parenthesis to its matching parenthesis by typing '2, and the
indentation of an expression can be made to correspond to the parenthesis
structure by placing the cursor at the beginning of the expression and typing

S.-

1-3-
,a

i " :€-' .: .:t~- *,L , .. *. ..... .. , .,.;.. ';'*..", "'..". ' ,



Specifying Design Rules for Lyra March 29, 1953

32. Units
Distances are specified in the same units used in the input Caesar files.

and should be integral. Caesar's internal units are half as big as the units
apparent to the user. Thus normally one unit corresponds to 1/2 lambda.

Since Lyra is not raster based distances can be scaled up, say for
greater precision, without significantly affecting performance. Note however
that numbers with absolute value less than 1024 are stored more efficiently
in Franz Lisp, and thus in Lyra. than larger numbers.

3.. Layers and Predicates 6
A rude in Lyra consists of a left hand side (LHS) specifying the context in

which the rule applys and a right hand side (RI-S) specifying constraints
which apply wherever the LES holds. Both the LH.S and RHS of rules involve
Layers and combinations of layers. Layers come in three varieties: priwary
layers, groun layers, and composite layers. Predicates are used to specify
layer combinations.

33.1. Primary Layers
P--nar-y L ayers are just the mask layers of tha technology to be

checked. Primary layers are specified as follows:

(primary-4ayers
(Ontern zL name> (<Caesar name> <cif name>))

'C'. )
It is convenient to choose short internal names (one or two characters), and
to capitalize the first character. The cif name is provided so that Lyra can
accept c f names in place of Caesar names in the input file. This simplifys
the interface between Lyra and programs not using the Caesar data format.
such as KWC. The primary layer specification for nmosMC looks like this:

(primary-layers
(P (polyslicon NP))
ID (diffaion ND))

M (metal N4i
I(implant NI)
C (cut NC)))

3.3.2. Grown layers
A groum layer is generated from a primary layer by expanding each rec-

tangle on the specified primary layer by a specified amount. Here is the form
of the grown layers specification:

(grown-layer.
<gomlayer name> <prim~ary Layer> <amount>)

)
<Orwn Layer name> gives a name for the new layer. <Primary laer> is the
internal name of a primary layer. Each edge of each rectangle on <primary
layer> is shifter out by <amount> units to create the corresponding

-4.
4.4

'h



Specifying Design Rules for Lyra March 29, 1953

rectangle on layer <grouT layer name>.

Grown layers are created prior to all other processing in Lyra. and once
created they are treated exactly as primary layers are. Note that grown
layers are internal to, Lyra only: they are never output.

Grown layers should be used cautiously since they increase the memory
requirements for processing designs substantially. Also, the largest amount
grouwn is added to the largest constraint size in a ruleset to determine the
design rule interaction distmce. If the design rule interaction distance is
large, hierarchical processing will suffer.

Currently only the nmosMC rules make use of a grown layer. In the
nmosMC rules the contact cut layer is grown out by one lambda, to provide
sufficient context to distinguish certain corners in butting contacts from
similar corners in badly formed transistors. The specification of this grown
layer in the nmosMC rules is:

(groWnayer
-C 2)) ; X = cut grown by 1 lambda = cut-context layer

Remember that two units correspond to one lambda.

3.3. Predicates
Predicates define combinations of layers. They are used in specifying

Composite LAyrs, in specifying the contezt patterns in the LHS of rules, and
in defining constraints in the RE-S of rules.

Predicates have the following forms:

<Primary or Groun Layer>,
not <Predicate>).
and <Predicas> <Predicate> ...), and
or <Precicate> <Predicate>...).

Arbitrarily complex layer combinations can be defined in this way. Some
examples of predicates are.

n ;Prtonce of layer V
inot) ;Absence of M
(nd P D (not C)) ;P and D both present but not C.

314. Camposite Layers

In Lyra each rule applies to corners on a specific layer. Many rules
apply to corners on primary layers, but some rules refer to corners resulting
from the interaction of layers. These rules occur at corners on a composite
layer defined as a combination of primary (and grown) layers. These compo-
site layers must be defined at the front of the rules file by a specification of
the following form:

3(:omposite4uyer
(compohsi Layer name > <deflning predicate >)

For example the composite layers specification for the nmosMC rules looks
like this:

-5-i



Specifying Design Rules for Lyra March 29, 1983 .

(o m po te -ayers
"R (and P (or X (not D)))) red
G and D (not P))) : green

and P D (not X))) transistor
Eand P D (not I) (not )Q)) : enhancement mode transistor

D I (not X))) ; depletion mode transistor
(PC C)) . poly-cut

GC (and D C (not P))) ;dif-cut

id (and X (or (not M) (not (or P D)))))) ; bad cover over contact

Note tha. unlike grown layers. composite layers are not actually constructed
in the data base, they simply refer to combinations of primary and grown 1
layers.

35. Layers
Once3 specified, primary-layers, grown-layers and composite-layers are

all used in identical fashion. When the term Layer is used below it is meant to
encompass all three types of layers.

34. LUS
The LHS of a rule defines the context in which the rule applies. It gives

the relevant corner layer (the layer on which corners are to be examined) a
corner t.1pe (convex or concave) and any additional pattern of layers that
must occur at a corner for the rule to apply. This section gives the details
involved in specifying the lES's of rules.

3.4.1. Corners

Each rule refers to corners on a specific layer (primary, grown or com-
posite) and of a specific type (either convex or concave). Convex corners,
such as those on a square are designated by the letter 'A! (read acute -

though technically a misnomer). Concave corners, such as those inside a U-
shape, are designated 'o (read obtuse). Corner specifications in rules have
the form.

(corner- <ype> <layer>)
Where <type> is 'a' for convex corners, and 'V for concave corners as
explained above. Examples:

(corner- a Mi); rule in to apply to convex corners on layer M.
(corner oX) ; rule in to apply to concave corners on layer X

&.4.2. Canonical Orientation and Quadrant Numbers In addition to the
corner layer and type explained above, it is sometimes desirable to specify
an additional pattern of layers which must occur at a corner. To express this
additional pattern information, and also to express the location of the con-
straints in the RHS of the rule, horizontal and vertical lines are drawn
through the corner under consideration. dividing space into four quadrants.
Following standard convention, the quadrants are numbered, by designating
the upper right quadrant the first quadrant and counting counter clockwise
from there (see Figure 4).

Since a corner can be oriented in four ways with respect to these qua-
drants, it is necessary to choose a fixed canonical orientaion, so that there



Specifying Design Rules for Lyra March 29, 1953 ,

CONVEX-j

aI

Figure I The Two Corner Types.

Figure 4, Quadrant Numnbering.

-7-



'V

Specifying Design Rules for Lyra March 29. 1983-- 4

is a definite relationship between corners and the information specified in
terms of the quadrant system. In Lyra rule specifications, corners are
always assumed to be centered on the first quadrant, as illustrated in Figure
5. The canonical orientation is used only to facilitate the specification of
rules: the rules apply equally to corners of all four orientations.

3.4.3. Also

The also clause can be used to specify combinations of layers which

must be present (or absent) in each of the four quadrants immediately adja- 4
cent to a corner. A rule applys to a corner only if all also conditions are
satisfied. The also clause has the form,

(also: <predicae for qadratnt 1>
<predicate for quadrmnt 2>

<predicate for quadrrut 3>
<predicate for radrant 4>) 1

Predicates am defined in a previous section. If there are no additional con-
text requirements on a quadrant, "nil' c&-i be used in place of a predicate. If
the conditions on Ine secord and fourth quadrant are distinct, a mirrored
version of the rule is automatically generated by the rule compiler, so that
all eight simrnetries 'orientations) of the rule will be checked. The also
clause is optona,': n many cases a rule applies to all corners of the layer and
type specified n the corner clause, and ar also clause is not needed.

+- ., The cormer and also clauses together constitute the LES's of rules.

° '

.II1,.''o

cv iv vEX CONCAVE

* 0go

Figure 5 Canonical Corner Orientation.

!-B



Specifying Design Rules for Lyra March 29, 1983

3.5. His
The RHS of a rule gives one or more constraints which are checked at all

corners which match the LHS of the rule. Constraints are defined in terms of
a rectangular region and a predicate. One corner of the constraint rectangle
always coincides with the corner in the design that the rule is being applied
to. This corner is called the generating corner for the constraint. If the
predicate does not hold throughout the interior of the constraint rectangle,
the constraint is violated, and a design rule violation is reported. Each con-
straint also has an associated text string which is output with violation
reports to identify the nature of the violation.

Constraint rectangles can be specified directly by giving the quadrants
in which they are located and their dimensions. Several macros are also pro-
vided for the most common constraint configurations. The details of specify-
ing constraints are given below.

&5. 1. vIlcation Text
By convention Lyra's violation messages have the form:

•-La<yrs or Conatructs >_<c Tpe >"
"<La rs or Constructs> gives the single character abbreviations for the

layers involved in the violation. Circuit constructs such as transistors and
buried contacts may a:so be indicated by short abbreviations (e.g. tr for
transistor; Be f-- buried contact). T/ pe>'s are one or two characters indi-
cating the type of error as follows:

. = minimum spacing violation,

w - minimum width violation,

pe = parallel edge spacing violation,

z = insufficient extension or enclosure,

p = polarity. e.g. diffusion doping doesn't match well in CMOS.

I = malformed circuit construct.
For example, the text string for a spacing violation between polysilicon and

diffusion would look like this:

New types can of course be invented if none of the ones listed fits. We have
found it best to keep violation messages short, since long messages tend to
overlap each other in the graphical output and become illegible.

The quotation marks delimiting the text string are for the benefit of the
lisp parser, they do not appear in violation reports. Violations are actually
reported as Caesar labels with the label texts corresponding to the violation
messages, and the label boxes corresponding to the violated constraint
regions. An explanation mark. '1'. is automatically prepended to the begin-
ning of the all violation messages so that violations can be easily located with
the Caesar search command.

I'.

4... .. -.. . .. . . . . . . . . .. . . . .... ... . . . . . ..... ,, -..-.- -..... .....-... ,......... .



Specifying Design Rules for Lyra March 29. 1953

&.5.2. Direct Specification of Constraints
If the RH.S of a rule contains only one constraint, it can be specified

using the build-constraints construct as follows:

(constraints:
(build-constraints
(quad<i> <z dimension> <V4 dTTensiaz>)
<predicate>
<text>))

Here <i> gives the quadrant number of the constraint: 1.2.3 or 4. <X diru'en-
sion> and <V dimension> give the dimensions of the constraint. <Predicixte>
is the predicate required to hold inside the constraint region. An always- I
violated constraint can be coded by using 'false' for <predicate>. This is
used in rules where the L}-S gives a corner pattern which should not occur.
<text> is a quoted text string describing the design rule viclation. as
explained above. Append is used to specify multiple constraints for a rulv:

(constraintz
(append 4
(build-constraints )
(build-constraints.)

Where each build-constraints construct is structured as above. The following
example is from the CMOS rules, cmos-pwJPL

(constraints:
(append
~build-consrit quadi 6 1) C "sc f")
udd.constrants (quad2 6 1 c"sc r')))

3.5.3. Constraint SocciflcaUon using Macros
Some frequently occurring constraint configurations can be specified

using macros. These specifications take the general form.
(constraints:
(<constraint macro> <dimension> <predicate> <rtet>))

Where <constraint macro> is one of: inside, outside. e-inside, @-outside, s-
itside, and s-outside. All constraint dimensions are either <dimension> or
one unit. <Predicate> and <text> specify a common predicate and text for
the generated constraints. Figure 6 shows the constraint configurations
corresponding to the six macros. Remember that the canonical corner
orientation is assumed when specifying constraints.

3L6. agles

We have now defined all the pieces necessary to specify rules in Lyra. As
we have seen, the LHS's of rules consist of corner and also constructs which
define the context in which the rules apply. The RHS's of rules consist of
constraint constructs which define constraints on corners where the rules
apply. The general form of the rule construct is:

(rule
corner: ... )

-10-

-..



Specifying Design Rules for Lyra March 29. 1983

I.I

INSIDE OUT SIDE

""E'SID ( E-Outu: r

dI

S- IuszpE* O'r I#

flur 6. Constraint Macros.

-11-

4 *.* ... -I , \2~ * . . . . .... .j . . . .



7-- 1 7 . 7

Specifying Design Rules for L)ra March 29, 1983

(constraints: ...))

Where the also construct is optional as suggested by the brackets. For
example, three rules from the nmosMC rules concerning the form of
poly/metal contacts look like this:

;c. Poly-Cut extension (complicated to handle butting contacts)
(rule

corner. (o P))
constraints. (e-inside 2 (not PC) "P/C x!')))

(rule
corner. (a PC))
also: nil (not GC) nil (not GC))

(constraints: (e-outside 2 P "P/C xe)))
(rule (corner:. (a PC))

also: nil nl nil GC)
"constraints: (build-constraints (quad2 2 1) P "P/C z")))

4. Rule Macros
This section gives the rule macros provided with the Lyra system. These

macros allow the easy and concise coding of many common rules. The
expansion of each macro is given both in terms of the rule construct of the
last section and graphically. In addition to defining the macros precisely,
these expansions are good examples of the use of the rule construct and the
corner based paradigm.

Each macro takes one or two layers as arguments. These layers can be
of any type: primary, grown or composite.

4.1. width

The width macro has the form:

(width <layer> <ditension> <text>)
This macro checks that <loayer> is at least <dimenson> wide everywhere.
The macro expands into two rules, one for concave corners on <layer> and
one for convex corners on <Liryer>. The second rule is necessary to check
that a pair of closely placed holes in <layter> do not result in a narrow strip.
(width P 4 "P...') expands to:

(rule
Scorner. (a P))
constraints (inside 4 P "Fr')))

(rule
(corner. (o P))
(onstraints: (e-nside 4 P "P_.)))

These rules are shown graphically in Figure 7.

Single layer spacing can be specified with the ss macro. This macro has
the form:

( <ltayer> <dimension> <text>)
This macro checks for a spacing of <dimension> between mask features on '

-12-

.j h . . . . . . . . .



- . - - . . . . . . l. -

Specifying Design Rules for Lyra March 29. 1953

Nor
P

NOTNl

P1
NOT

P

Figure 7. Width Rules. (width)

<layer>. Like the uidth macro, ss expands to two rules: one for convex
corners and one for concave. The second rule checks for small holes in
<layer>.

(as P 4 "PY') expands to:
(rule

(corner: (a P))
constraints: (e-outside 4 (not P) "P_.")))

(rule
(coer. (o P))
(constraint: (outsid,, 4 (not P) "P_w")))

This in shown graphically in Figure S.

Paralel edge checks can be done with the pe macro.

(p. <tama> <imrnnston> <tezt>)
This macro checks spacing between adjacent feature edges on a layer. The
difference between parallel edge checks and spacing or width checks is that
the parallel edge checks are not concerned with diagonal spacing. These
checks are used to guard against thin slivers of resist during fabrication.
Such thin slivers could break off and be deposited somewhere else on the

• "design causing damage.

-13-

I.%

i



Specifying Design Rules for Lyra March 29, 1953

MoA
P

Norn

Mo? irO,

4 Figure & Single Layer Spacing Rules. (ss)

The pe macro expands to two rules, one for convex corners, and the
other for concave corners. For example. (p. 1 4 '1.pe') has the following
ex:pansion:

(rule
(corner. (a 1))
(constraints:

aped
( baild-constraint: (= 1d 4 1 .p"

aIld-conhtrainta quad 1 1 1.e)

~I-constints quad2 4 1 (not I~ P.3j

(rule
L . (corner (o )

( constraints:

$build-COUNLtst quad2 14~ 2~'

Ibuhid-constreinta *quad341 (not) I ...pe")
buid-constrainta (quad3 141)(not I) pe

This is shown grapbicaily in Figure 9.

-14-

* t ,\,.i ' * V ~ *C/ :.- .*



I--

Specifying Design Rules for Lyra March 29. 1983 C
I j"

NOT

II

.1 1

Nor

"or,

Figure 9. Parallel Edge Rules. (pe)

4.3.1. s-p
The Sep :nacro can be used to check interlayer spacing.

(sep <Layar 1> <laye~r 2> <dimvasion> <text)
This checks that <layer 1> and <layer 2> are spaced at least <d~mnsian>
apart, and where this is not so report. violations with message <text>. Sep
assumes <Layer 1> and <layer 2> do not overlap. In some cases the two
layers are logically disjoint and this condition need not be checked. This is
true, for example. if <Layer 1> is nonimplanted gate regions. and <layer 2> is
implant. If the two layers are not logically disjoint, the sop test must be aug-
mented with a disjointness test. An easy way to check that for this is to
define a composite layer to be the overlap of <Layer 2> and <Layer 2>, e.g.
(and <layer 1> <layer 2>). and then write a rule that generates violations at
all convex corners of the composite layer.

The expansion of sp A B 4 "AB..j) is:

(nil NT p

JeoNnr (constraints:f(ot" 4 _not __.

corner (aB)
constraints: (s-outside 4 (not A) ",AB..j')))

and layer B are not symmetrical

L.I..

is~~Th sow gaphocall n Fure 10. te thahcntaitnlayer Apci

(*lep <V* 1 <l ;:e : > < <te .zt>)~-*



Specifying Design Rules for Lyra March 29. 1983 "

A

NOT

A A

S A

I 9

Figure 10. Interlayer Spacing Rules. (sep)

4.3.2. ext
Enclosure rules can be written using the ext macro.

(ext <yej.,e.> <Layer 2> <nhnosian> <text>)
This snecifies that <layer 1> must extend beyond <layer 2> by <irnainioi>
in all directions. The ext macrc assumes <zler 1> covers <layer 2> every-
where. If this is not logically required by the definitions of <layer 1> and
<layer 2>, then it must be checked for separately. This can be done by look-
ing for the existence of a composite layer (and <layer 1> (not <layer 2>)).
The expansion of (ext A B 4 "AB..') looks like this:

(rule
Icorner: (a B))
constraints: (outside 4 A "AB-'.)))

(rule
(corner: (o A))
(constraints: (-insIde 4 (not B) "AB-')))

This is shown graphically in Fligure 11.

5. mlae File Orsanization and Naming
The overall organization of Lyra rule files is as follows:

1. Primary layer specification
2. Grown layer specification

- 16-



I

Specifying Design Rules for Lyra March 29, 1983

Nors

NOT

AA

FIgure 11. Enclosure Pules. (ext)

3. Composite layer specification
4. Rule constructs and rule macros

All but the primary layer specification is optional.
By convention ruiesets are named by appending an indication of the

source (in capital letters) to the name of the technology (as known to Cae-
sar). The symbolic rule files are given extension '.r'. Thus: nmosMC.r.
nmosBERK.r, and cmos-pwJPLr are the source files for the Mead & Conway
nMOS rules, the Berkeley nMOS rules, and the JPL CMOS rules respectively.
These rulesets can be found in -cad/lib/Lyra.

. Writing. Compiling. and ToUng Rule Fles
The Lyra rule compiler. Rulec, is used to generate an executable Lyra

from a ruleset file. Rulec is a shell script which invokes three processing
steps:

(1) Compile rule file to lisp code (Rulecl)
(2) Compile lisp code to object code (Liszt)

(3) Link rule specific object code with a Lisp containing rest of the Lyra
code to generate an executable Lyra.

Together. the three steps take about 10 cpu minutes for a typical ruleset.
Syntax errors in the input file will be caught by the lisp parser during step 1,

. and will result in strange error messages. Many text editors have special
features to help balance parentheses properly in lisp code. The section on

-17-

b%?; ," ' ; '.c-... ." :.'- ..+-.. '. , -.. -... .,.--- -. - .. -,

41 | - •-t . . . ." ++ ++ +' ,,+ • * ", . , "+ :+,.7



.4°

Specifying Design Rules for Lyra March 29, 1953 '/

Lisp Syntax above describes such features in Vi. The executable Lyra pro-
duced in the third step will have the same name as the input file. but without
the '.r extension.

The best way to go about writing a new ruleset is to copy and then
modify an existing ruleset. The nmosMC, nmosBERK and cmos-pwJPL
rulesets can be found in -cad/lib/lyra. It would be helpful to read through
these rulesets carefully to see how some of the more complicated rules are
handled. You can work in -cad/lib/lyra or in your own area. Note however
that each executable Lyra produced by Rulec is about one megabyte big!

After a ruleset is compiled , it can be tested in batch mode by giving
Lyra the -r option with the full pathname of the executable for :our ruleset.

lyra -r -me/myrulm tstfMe.ca
Your ruleset can also be invoked interactively from Caesar by giving the full
pathname of your file as an argument to the Caesar lyra subcommand.

:lrya -me/myrules
It is a good idea to exercise each new rule both with cases that should pass
the rule and cases that should violate it. It is useful to keep around the test
files you create for your rules. They can be rerun at any time to see if any-
thing has been broker. One way to quickly generate test case s is to make
multiple copies of some structure and then modify each copy in a different
way.

A ruleset can be made the default for a given Caesar technology by
adding an entry to -cad/lib/lyra/EiPAULTS. You can also create a personal
default by setting the Lyra 'r' option in the .cadrc file in your home direc- K
tory.

More details on Rulec, Lyrm. and Chesr are given in the (c ad)man pages
for these programs and in the Caesar manual.

L0

ii

5%%

-* 6R~ 1 -



FILMED

10-85

DTIC


